

ПОЖТЕХНИКА

Безопасное будущее

Уважаемые коллеги!

Компания «Пожтехника» в 2006 году первой в России начала применять революционную технологию безопасного газового пожаротушения с использованием газового огнетушащего вещества Novec^{тм}1230. С 2018 года компания активно искала полноценную замену Novec^{тм}1230, и в 2021 году был заключен контракт с государственной химической корпорацией Sinochem на производство Sineco®1230. В настоящее время эта технология признана золотым стандартом в области пожаротушения во всем мире.

Десятки отраслевых испытаний и исследований технологий тушения с использованием Sineco®1230. свыше 25 000 реализованных проектов подтверждают ведущие позиции компании в российской отрасли систем автоматического газового пожаротушения (АГПТ).

В 2006 году самый первый проект с применением ГОТВ Novec^{тм}1230 в России был реализован в нефтегазовой отрасли. В 2008 году компания «Пожтехника» запустила первую производственную линию по сборке и заправке систем АГПТ. В 2011 году ГОТВ Novec^{тм}1230 было включено в действующий на тот момент Свод Правил 5.13130.2009, что дало новый импульс продвижению и более широкому применению технологии безопасного газового тушения.

В 2015 году, в ответ на растущие объемы рынка, государственную политику в области импортозамещения и необходимость сокращения сроков поставки систем, открывается завод «ПТК Пожтехника» по производству систем газового пожаротушения. С самого начала организация и технологии производства базируются на передовых международных стандартах и требованиях к системе контроля качества. Работа с крупнейшими заказчиками в нефтегазовой, транспортной и энергетической отраслях послужила стимулом для внедрения наиболее современных технологий производства и расширения диапазона условий применения систем автоматического газового пожаротушения производства компании «Пожтехника».

Борьба с изменениями климата становится сегодня ведущим мировым трендом. При этом больше половины объема российского рынка ГОТВ делили между собой хладоны 125 и 227еа, парниковые газы, имеющие высокий потенциал глобального потепления. Постановление Правительства от 25.03.2020 №333, а также Приказ Министерства Природы от 12.01.2021, целью которых является поэтапное снижение потребление парниковых газов, оказали значительное влияние на отрасль.

ГОТВ Sineco® 1230, не являющийся парниковым газом, является хорошей альтернативой для заказчиков, желающих избежать регуляторных и финансовых рисков, связанных с глобальной экологической повесткой.

Изменения и обновления происходят непрерывно в техническом, экологическом регулировании, потребностях рынка и отраслевых стандартах, но одно остается неизменным - системы производства 000 «Пожтехника» на основе ГОТВ Sineco®1230 являются оптимальным выбором для заказчиков, стремящихся быть уверенными в проектном решении, высоком качестве компонентов и системы в целом, ее эффективности, безопасности и, что немаловажно, в технической поддержке на всех этапах жизненного цикла систем. Постоянно идет процесс переосвидетельствования систем, установленных с 2006 года, компания «Пожтехника» оперативно обеспечивает следующий десятилетний цикл службы систем с минимальными затратами для заказчиков.

С уважением, Генеральный директор 000 «Пожтехника» Наталья Хазова

СОДЕРЖАНИЕ

	BBE	ДЕНИЕ	4
		Общие сведения	4
		Область применения	4
	Ш	Свойства Sineco®1230	5
		Огнетушащая концентрация	5
		Токсичность	
		Характеристики по экологичности	
1	TIAD		
ı		DBЫE CXEMЫ	
	1.1	Одномодульная установка	
	1.2	Установка из группы модулей	
	1.3	Централизованная установка	. 10
2	МОД	УЛЬ ГАЗОВОГО ПОЖАРОТУШЕНИЯ МПА-NVC1230	. 11
	2.1	Модуль газового пожаротушения МПА-NVC1230 (30-52180-50) и МПА-NVC1230 (50-52180-50).	. 13
	2.2	Модуль газового пожаротушения МПА-NVC1230 (30-832-25)	
	2.3	Кожух защитный	
	2.4	Манометр	
	2.5	Датчик давления	
	2.0	2.5.1 Реле давления	
		2.5.2 Преобразователь давления	
3		ВЫЕ ТЕХНИЧЕСКИЕ РЕШЕНИЯ ДЛЯ ЗАЩИТЫ ТИПОВЫХ ОБЪЕКТОВ	
	3.1	Модуль газового пожаротушения МПА-NVC1230 (21-12-15) (Г)	
	3.2	Автономное устройство газового шкафного пожаротушения (АУШТ) R-Line	
		3.2.1 Дополнительное оборудование	
	3.3	Комплект подвесного модуля «ТУЧИГА»	
4	ПУСН	КОВЫЕ УСТРОЙСТВА	. 31
	4.1	Электромагнитный привод ЕА45М	
	4.2	Электромагнитный привод (соленоид) ЕА45Ех	. 33
	4.3	Ручной привод (локальный) NVC	
	4.4	Пневмопуск ПН-65	
		4.4.1 Дренажный клапан пневмопуска ДКП-0,5/250	
_	٥٢٥١	РУДОВАНИЕ ДЛЯ КРЕПЛЕНИЯ МОДУЛЕЙ	
5			
	5.1	Кронштейн баллона	
	5.2	Стойка модуля	
6	ОБОР	РУДОВАНИЕ ДЛЯ ПОДКЛЮЧЕНИЯ МОДУЛЕЙ К ТРУБОПРОВОДУ	
	6.1	Рукав высокого давления РВД.	
		6.1.1 Муфта под РВД	. 42
		6.1.2 Муфта переходная под РВД	. 42
	6.2	Муфта-переходник	. 43
		6.2.1 Муфта-переходник NVC	. 43
		6.2.2 Муфта-переходник G х K	. 44
		6.2.3 Ниппель муфты-переходника NVC	. 44
	6.3	Клапан обратный ОКNVC-50	
		6.3.1 Муфта переходная NPT 2 1/2"	
	6.4	Коллектор NVC	
	6.5	Клапан предохранительный	
		6.5.1 Муфта К 3/4"	
		6.5.2 Клапан предохранительный КПРМ	. 49
		6.5.2 Клапан предохранительный КПРМ 6.5.3 Муфта К 1/2"	

7	0501	РУДОВАНИЕ РАСПРЕДЕЛИТЕЛЬНОГО ТРУБОПРОВОДА	51
	7.1	Насадок	52
		7.1.1 Насадок NVC	
		7.1.2 Насадок скрытый выдвижной NVC-S2	53
		7.1.3 Ниппель под насадок	
	7.2	Сигнализатор давления универсальный СДУ-М	54
		7.2.1 Муфта СДУ-ПК G 1/2"	55
	7.3	Штуцерно-торцевое соединение ШТС	55
	7.4	Заглушка АПЭ 21	56
8	PACI	ПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА	57
	8.1	Распределительное устройство РУП	58
		8.1.1 Дополнительное оборудование для РУП	59
	8.2	Коллектор РУ	60
	8.3	Рама коллектора РУ	60
9	ОБОІ	РУДОВАНИЕ ДЛЯ ПРОВЕДЕНИЯ ИСПЫТАНИЙ	61
	9.1	Баллон испытательный переносной БИП-40-150	
	9.2	Устройство для опрессовки трубопровода УОП-10	
		9.2.1 Переходник для УОП	
	9.3	Схемы подключения оборудования для проведения испытаний	64
		9.3.1 Подключение УОП-10 к БИП-40-150	
		9.3.2 Подключение УОП-10 к Муфте РВД	64
		9.3.3 Подключение УОП-10 к Коллектору NVC К1	65
		9.3.4 Подключение УОП-10 к Муфте СДУ-ПК	65
	9.4	Заглушка испытательная	66
		9.4.1 Заглушка ВР испытательная	66
		9.4.2 Заглушка НР испытательная К	66
		9.4.3 Заглушка НР испытательная G	67
10	ДОП	ОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ	. 68
		Шкаф модулей ШКМ	
		Клапан сброса избыточного давления	
		10.2.1 Решетка декоративная	73
		10.2.2 Схема разметки отверстий для крепления КСИД	74
	10.3	Оборудование газодымоудаления	76
11	ПРОІ	ЕКТИРОВАНИЕ	78
		ЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ УСТАНОВОК ГАЗОВОГО ПОЖАРОТУШЕНИЯ	
		Огнетушащие вещества	
	II	Стадии проектирования	
	 III	Выполняемые расчеты	
	IV	Расстановка насадков и разводка трубопроводов	
	V	Проектировщику на заметку	
	VI	Автоматизированные системы проектирования	

Представленный каталог содержит перечень основного применяемого оборудования.

При необходимости индивидуального исполнения оборудования следует обратиться к производителю для определения возможности его разработки и изготовления.

Для нашего оборудования разработана морская упаковка согласно ГОСТ 15846-2002.

ВВЕДЕНИЕ

Общие сведения

Sineco®1230 – безопасное газовое огнетушащее вещество – альтернатива хладонам, производство некоторых из которых прекращено в 1993 г., в соответствии с положениями Монреальского протокола по веществам, разрушающим озоновый слой.

Что представляет собой Sineco $^{\circ}$ 1230? Это вещество относится к разряду фторированных кетонов. Химическая формула – $CF_3CF_2C(0)CF(CF_3)_2$. Наименование вещества в соответствии со стандартом ISO – FK-5-1-12 (ФК-5-1-12).

Sineco®1230 экологически безопасен и имеет нулевой потенциал озоноразрушающей способности. По сравнению со многими другими распространенными ГОТВ, он имеет низкий потенциал глобального потепления и короткое время сохранения атмосфере до полного распада. Sineco®1230 безопасен как для окружающей среды, так и для человека.

Sineco® 1230 обладает низкой токсичностью. При тушении пожара он не снижает уровень кислорода. Sineco®1230 является наименее токсичным из представленных в таблице ГОТВ. Sineco®1230 производится в соответствии с требованиями ISO 9001.

При нормальных условиях – это бесцветная жидкость со слабым запахом. Давление собственных паров газа незначительно, поэтому используется газ-вытеснитель – осушенный азот для создания избыточного давления в 25 бар или 42 бара.

Ш

Область применения

Телекоммуникации и IT

- центры обработки данных
- серверные
- оборудование биллинговых систем
- радиопередающие центры
- аппаратные базовых станций сотовой связи
- междугородные и городские телефонные станции

Промышленность

- аппаратные и серверные АСУ ТП
- блоки промышленных контроллеров
- оборудование управления промышленными роботами
- машинные помещения
- генераторные залы
- электрощитовые
- складские помещения
- насосные

Электроэнергетика

- электрические генераторы
- аккумуляторные помещения
- силовые трансформаторы
- кабельные сооружения электростанций и подстанций
- электрощитовые
- коммутационное и контрольноизмерительное оборудование
- блочные щиты управления
- центральные и резервные пункты управления

Банковский сектор

- серверные
- архивы финансового отдела
- архивы личных дел сотрудников
- кладовые ценностей (в том числе автоматизированные)
- расчетно-кассовые центры
- депозитарии

Объекты министерства культуры

- запасники музеев
- реставрационные центры
- фондохранилища библиотек
- исследовательские лаборатории
- выставочные залы

Объекты нефтегазового сектора

- ЩСС (щитовые слаботочных систем)
- аппаратные
- электрощитовые
- серверные систем автоматизации
- телекоммуникационные помещения
- блочные РУСН
- помещения общестанционного РУСН
- резервные РУСН
- помещения ИБП
- помещения общестанционных аккумуляторных батарей

Свойства Sineco®1230

ГОТВ Sineco®1230 является газом, но при комнатной температуре находится в жидком агрегатном состоянии. Является диэлектриком, не проводит электрический ток ни в жидком, ни в газообразном состоянии. Напряжение пробоя для паров ГОТВ Sineco®1230 в насыщенном состоянии при 1 атм, 21°С, при расстоянии между электродами 2,7 мм составляет 48 кВ, что в 2,3 раза выше, чем у осушенного азота.

Свойства ГОТВ Sineco®1230 подобны свойствам многих заменителей хладонов первого поколения за одним важным исключением – данное вещество находится в жидкой фазе при комнатной температуре. Температура кипения ГОТВ Sineco®1230 составляет 49,2°С, а это значит, что данный продукт имеет гораздо более низкое давление паров, чем другие химические огнетушащие вещества, которые находятся в газообразном состоянии при комнатной температуре. ГОТВ Sineco®1230 не снижает температуру в помещении при тушении более чем на 2–3°С, что крайне важно в IT-отрасли.

Химическая формула	CF ₃ CF ₂ C(0)CF(CF ₃) ₂
Молекулярная масса	316,04
Температура кипения при 1 атм	49,2°C
Температура замерзания	-108,0°C
Плотность в жидком состоянии	1,60 г/мл
Плотность в газообразном состоянии при давлении 1 атм	0,0136 г/мл
Удельный объем, газ при 1 атм	0,0733 м³/кг
Удельная теплоемкость, жидкость	1,103 кДж/кг°С
Удельный объем, пар при 1 атм	0,891 кДж/кг°С
Теплота испарения при температуре кипения	88,0 кДж/кг
Вязкость жидкости при 0°C/25°C	0,56/0,39 сантистокс
Давление пара	0,404 бар
Относительная диэлектрическая прочность при 1 атм	(N2=1.0) 2,3

Ш

Огнетушащая концентрация

Федеральным государственным учреждением «Всероссийский научно-исследовательский институт противопожарной обороны» (ФГБУ ВНИИПО МЧС России) были проведены испытания по определению минимальной огнетушащей концентрации ГОС при тушении эталонного н-гептана в соответствии с методиками, изложенными НПБ 51-96 «Составы газовые огнетушащие. Общие технические требования пожарной безопасности и методы испытаний», Москва 1997 г. Испытания по опреде-

лению минимальной флегматизирующей концентрации ГОС при разбавлении метановоздушных смесей проводились методом «Экспериментального определения минимальной флегматизирующей концентрации флегматизатора» по ГОСТ 12.1.044. На основе «Отчета об испытаниях» ФГБУ ВНИИПО МЧС России была утверждена Нормативная объемная огнетушащая концентрация (НООК) 4,2% об.

Наименование огнетушащего вещества Классы пожара		Плотность пара при Р=101,3 КПа и Т=20°, кг/м³	Минимальная нормативная объемная огнетушащая концентрация, % (об.)	
Sineco®1230	А, В и Е электрооборудование под напряжением	13,6	4,2	

Токсичность

Sineco®1230 обладает исключительно низкой токсичностью.

Сравнительная характеристика токсичности различных ГОТВ

Характеристика	Хладон 125	Инерген	CO ₂	Хладон 23	Ar	Хладон 227	Sineco®1230
Уровень ненаблюдаемого вредного эффекта (NOAEL*), %	7,5	43	5	30	43	9	10
Расчетная концентрация, %	9,8	36,5	34,9	14,6	39	7,2	4,2

Уровень, не вызывающий вредного воздействия (NOAEL) для всех показателей острой токсичности составил 10 % по объему (100 000 миллионных долей в объеме) в воздухе. При уровне NOAEL, равном 10%, существует общее мнение, что ГОТВ Sineco®1230 не только безопасно для предполагаемой области применения, но и имеет большой запас по безопасности относительно типовых проектных концентраций для установок пожаротушения. Типовые проектные концентрации в диапазоне от 4,2 до 5,9 % по объему дают запас по безопасности от 69 до 138%.

Характеристики по экологичности

После попадания в окружающую среду, органические вещества могут выводиться из атмосферы несколькими путями. Исследования, проведенные для огнетушащего вещества Sineco® 1230, позволили определить скорость вывода его из атмосферы, а также время жизни этого вещества в атмосфере. Очень низкая растворимость ГОТВ Sineco®1230 в воде и низкая степень распада в воде не позволяют считать атмосферный гидролиз значимым механизмом вывода этого вещества.

Главная причина распада вещества Sineco®1230 в атмосфере — это фотолиз. Вещество имеет высокую степень поглощения энергии в ближнем ультрафиолетовом диапазоне, что и определяет малое время его жизни в атмосфере. Скорость фотолиза в условиях атмосферы и механизм распада данного вещества были изучены двумя независимым исследовательскими группами. Скорость фотолиза фторкетона определяет время его жизни в атмосфере в газовой фазе, равное, приблизительно, одной неделе, что соответствует исследованиям компании ЗМ, которые показали, что время жизни в атмосфере ГОТВ Sineco®1230 составляет порядка 5 дней.

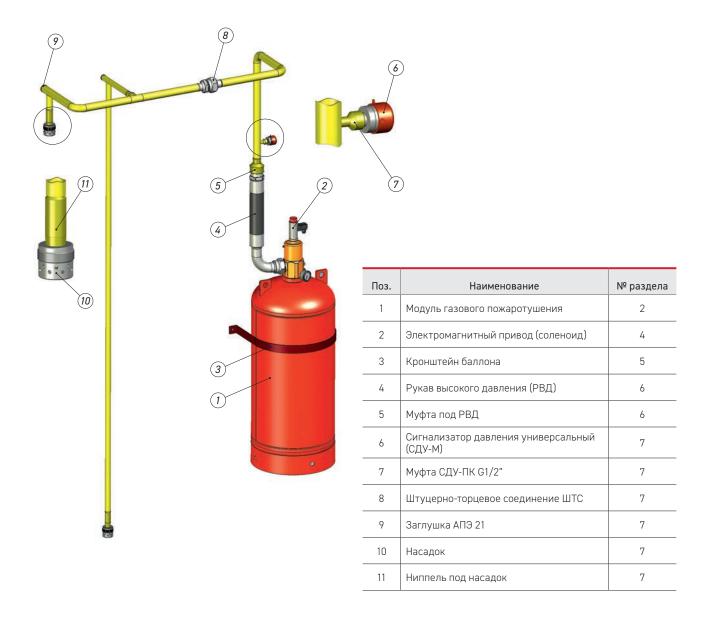
ГОТВ Sineco®1230 не содержит хлор и бром и имеет нулевой потенциал озоноразрушения.

Потенциал глобального потепления (ПГП) — это показатель, являющийся относительной мерой возможного влияния на климат вещества, действующего в атмосфере как парниковый газ. ПГП такого вещества, согласно Межправительственной комиссии по изменению климата (IPCC), определяется, как интегрированное усиление действия радиации из-за выброса 1 килограмма данного вещества относительно потепления, вызванного 1 килограммом CO_{2} .

Потенциал климатического влияния ГОТВ Sineco®1230 ограничивается очень малым временем жизни в атмосфере и низким потенциалом глобального потепления. ПГП для ГОТВ Sineco®1230 составляет 1 или меньше при использовании метода IPCC 2007 года и 100-летнего периода интегрирования, включая как прямое воздействие реагента, так и непрямое воздействие продуктов его распада. Отсюда можно сделать вывод, что «потенциал глобального потепления» у данного соединения пренебрежимо мал.

1

типовые схемы


1.1 Одномодульная установка

Модульная установка газового пожаротушения является наиболее распространенным и гибким решением для защиты помещений различной сложности. Предназначена для ликвидации возгорания в помещении или группе помещений объемным способом с одновременной подачей

газового огнетушащего вещества во все защищаемые объемы.

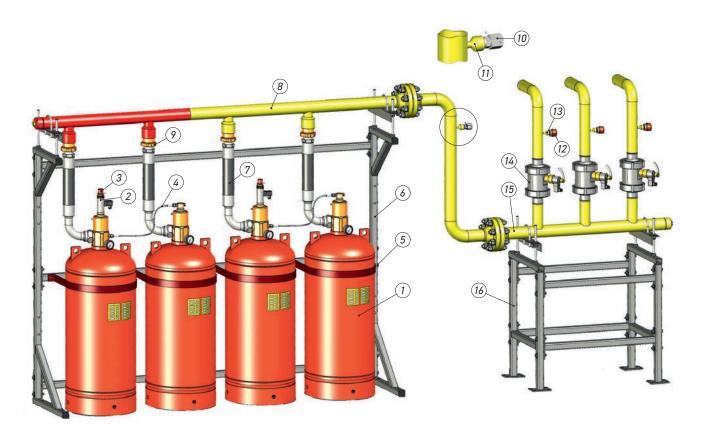
Модули газового пожаротушения могут располагаться как в самом защищаемом помещении, так и за его пределами. При установке АУГПТ за периметром защищаемого помещения модули следует размещать возможно ближе к защищаемому помещению. При этом модули не следует располагать в местах, не соответствующих условиям эксплуатации, которые приведены в документации на оборудование. К таким, в частности, относятся места, где модули могут быть подвергнуты опасному воздействию факторов пожара, перегреву, механическому, химическому или иному повреждению.

Геометрия распределительного трубопровода разрабатывается в соответствии с габаритами защищаемого помещения и спецификой объекта защиты с учетом изолированных пространств, таких как подвесной потолок, фальшпол и т.п. Работоспособность установки подтверждается результатами гидравлического расчета, произведенного на программном обеспечении, имеющем положительное заключение ФГУ ВНИИПО МЧС России.

1.2 Установка из группы модулей

Для обеспечения одновременной подачи ГОТВ в количестве, превышающем вместимость одномодульной установки, или невозможности ее использования, применяются модульные установки, состоящие из группы модулей. Объединение модулей в группы производится с помощью общего коллектора и общей системы запуска, которые позволяют обеспечить одновременную подачу газа из всей группы в распределительный трубопровод. В группу могут быть объединены только модули одинакового типоразмера с одинаковой заправкой ГОТВ.

Поз.	Наименование	№ раздела
1	Модуль газового пожаротушения	2
2	Электромагнитный привод (соленоид)	4
3	Пневмопуск	4
4	Кронштейн баллона	5
5	Стойка модуля ¹	5
6	Рукав высокого давления (РВД)	6
7	Коллектор	6


¹ Оборудование является опциональным и его наличие обусловливается проектным решением.

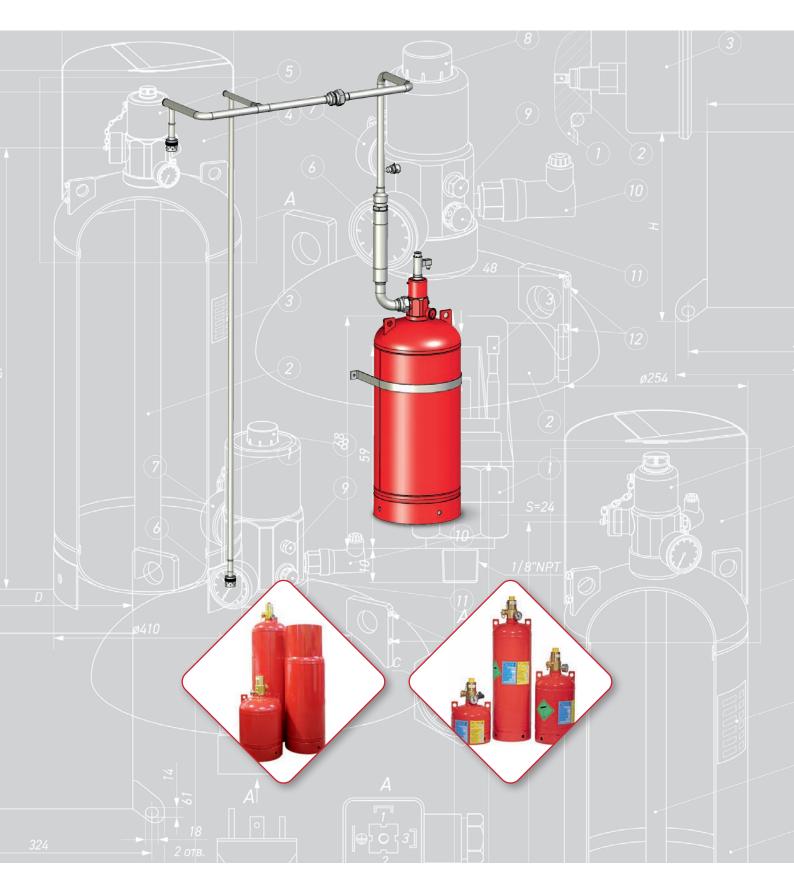
1.3 Централизованная установка

Централизованная установка применяется для защиты одного из нескольких помещений на объекте (направлений) по выбору, в случаях, когда применение модульных установок невозможно или экономически нецелесообразно.

Установка должна располагаться в специально оборудованном помещении (станции пожаротушения) и иметь в своем составе модули со 100% резервом ГОТВ, подключенные в общий коллектор с модулями для хранения расчетного количества ГОТВ, и распределительные устройства, отвечающие за пропуск ГОТВ в выбранном направлении.

Транспортировка ГОТВ от помещения стации пожаротушения до защищаемого направления осуществляется по магистральным трубопроводам, подключенным к распределительным устройствам. Дополнительно к автоматическому пуску централизованные установки оборудуются устройствами местного пуска, позволяющими произвести запуск модулей из помещения станции пожаротушения.

Поз.	Поз. Наименование			
1	Модуль газового пожаротушения	2		
2	Электромагнитный привод (соленоид)	4		
3	Ручной привод (локальный)	4		
4	Пневмопуск	4		
5	Кронштейн баллона	5		
6	Стойка модуля ¹	5		
7	Рукав высокого давления	6		
8	Коллектор	6		
9	Клапан обратный	6		


Поз.	Наименование	№ раздела
10	Клапан предохранительный ¹	6
11	Муфта К 3/4" ¹	6
12	Сигнализатор давления универсальный (СДУ-М) ¹	7
13	Муфта СДУ-ПК G1/2″¹	7
14	Распределительное устройство	8
15	Коллектор РУ ¹	8
16	Опора РУ ¹	8

¹ Оборудование является опциональным и его наличие обусловливается проектным решением / ПОД ЗАКАЗ.

2

МОДУЛЬ ГАЗОВОГО ПОЖАРОТУШЕНИЯ МПА-NVC1230

2

Модуль газового пожаротушения МПА-NVC1230

Модуль предназначен для хранения под давлением и выпуска газового огнетушащего вещества (ГОТВ) при тушении пожаров классов A, B по ГОСТ 27331 и E по Федеральному закону N 123-Ф3.

Модуль поставляется в сборе – заправленный ГОТВ (в соответствии с заказом) и находящийся под давлением газа-вытеснителя (азот).

Модуль устойчив к воздействию температуры окружающей среды в диапазоне от минус 20 до 50 °C и относительной влажности воздуха до 98% при температуре 35 °C.

Условия транспортирования модуля:

- в части воздействия климатических факторов внешней среды по группе условий хранения и транспортирования 3 (ЖЗ) ГОСТ 15150, с допустимой температурой от минус 30 до 50°C;
- в части воздействия внешних воздействующих факторов (ВВФ) в условиях «С» по ГОСТ 23170.

Условия хранения в части воздействия климатических факторов внешней среды – по группе условий хранения 1Л (отапливаемые помещения) ГОСТ 15150. При транспортировке и хранении необходимо защищать ЗПУ модуля специальным кожухом защитным.

Обозначение при заказе:

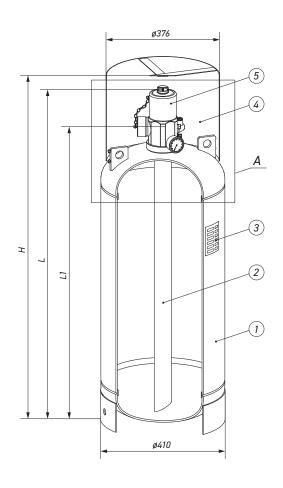
Модуль газового пожаротушения **МПА-NVC1230 (X1 - X2 - X3) X4,** где:

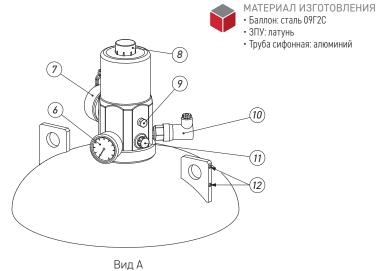
МПА - NVC1230 - наименование модуля, принятое заводом-изготовителем;

Х1 – рабочее давление в модуле, бар (30, 50);

Х2 - вместимость баллона, л (8, 16, 20, 32, 52, 106, 147, 180);

ХЗ – диаметр условного прохода ЗПУ, мм (25, 50);


Х4 - обозначение технических условий, в соответствии с которыми изготовлен модуль.


2.1

Модуль газового пожаротушения МПА-NVC1230 (30-52...180-50) и МПА-NVC1230 (50-52...180-50)

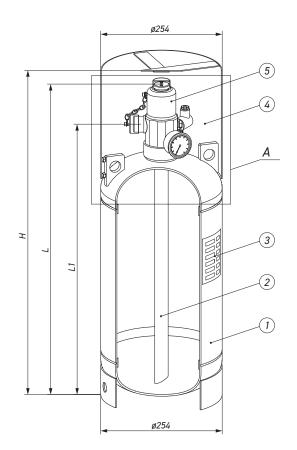
- 1 Баллон
- 2 Сифонная труба
- 3 Шильд
- 4 Кожух защитный1
- 5 Запорно-пусковое устройство (ЗПУ)
- 6 Манометр
- 7 Заглушка транспортная
- 8 Колпачок транспортировочный
- 9 Заглушка канала пневмопуска
- 10 Датчик (реле) давления2
- 11 Мембранное предохранительное устройство (МПУ)
- 12 Место крепления кожуха защитного. Может использоваться для заземления модуля (резьба М6)

¹ Кожух защитный не входит в комплект поставки модуля.

² В зависимости от заказной комплектации датчик может быть заменен на аналоговый преобразователь давления.

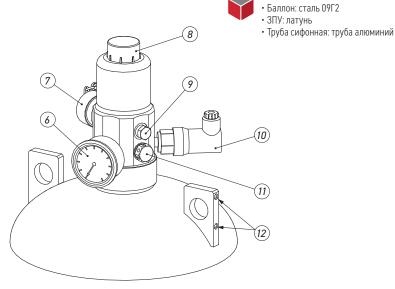
	Значение для модулей		
Наименование показателей	MΠΑ-NVC1230 (30-X2-50)	MΠΑ-NVC1230 (50-X2-50)	
Рабочее давление в модуле при 50°C, МПа (бар / кгс/см²)	2,9 (29,0 / 29,6)	4,9 (49,0 / 50,0)	
Номинальное давление в модуле при 20°С, МПа (бар / кгс/см²)	2,5 (25,0 / 25,5)	4,2 (42,0 / 42,8)	
Диаметр условного прохода ЗПУ / сифонной трубки, мм	50/50		
Гидравлическое сопротивление, эквивалентная длина модуля, м, не более	10,67		
Остаток ГОТВ в баллоне, кг, не более	0,6		
Назначенный ресурс срабатываний модуля ¹ , раз	10		
Назначенный срок службы модуля ¹ ,лет, не менее	1	0	
Срок службы модуля, лет, не менее	5	0	
Периодичность освидетельствования баллона модуля ² , лет, не более	15		
Технические условия на модуль	4854-001-76585836-08 изм.1	4854-002-76585836-2011	

¹ После выработки назначенного ресурса срабатываний или по достижении назначенного срока службы проводится капитальный ремонт модуля. После проведения капитального ремонта назначенный ресурс срабатываний и назначенный срок службы восстанавливаются.


 $^{^{2}}$ Периодичность технического переосвидетельствования баллона приводится в паспорте на баллон.

		D	Размеры, мм			Масса модуля
Артикул	Тип модуля	Вместимость модуля, л	L	L1	Н	без ГОТВ и кожуха защитного, кг
402309	MΠΑ-NVC1230 (30-52-50)	52	700	F00	770	F0
402294	MΠΑ-NVC1230 (50-52-50)		720	590	770	50
402288	MΠΑ-NVC1230 (30-106-50)	106	115 /	100/	100/	F/
402305	MΠΑ-NVC1230 (50-106-50)		1154	1024	1204	76
402289	MΠΑ-NVC1230 (30-147-50)	1/7	1/00	1050	1500	0/
402292	MΠΑ-NVC1230 (50-147-50)	147	1489	1359	1539	96
402291	MΠΑ-NVC1230 (30-180-50)	100	17/0	1/20	1010	110
402093	MΠΑ-NVC1230 (50-180-50)	180	1769	1639	1819	113

2.2


Модуль газового пожаротушения МПА-NVC1230 (30-8...32-25)

МАТЕРИАЛ ИЗГОТОВЛЕНИЯ

- 1 Баллон
- 2 Сифонная труба
- 3 Шильд
- 4 Кожух защитный 1
- 5 Запорно-пусковое устройство (ЗПУ)
- 6 Манометр
- 7 Заглушка транспортная
- 8 Колпачок транспортировочный
- 9 Заглушка канала пневмопуска
- 10 Датчик (реле) давления2
- 11 Мембранное предохранительное устройство (МПУ)
- 12 Место крепления кожуха защитного (М6). Используется для заземления модуля

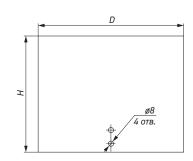
¹ Кожух защитный не входит в комплект поставки модуля.

Вид А

 $^{^2}$ В зависимости от заказной комплектации датчик может быть заменен на аналоговый преобразователь давления.

Наименование показателей	Значение
Рабочее давление в модуле при 50°C, МПа (бар / кгс/см²)+	2,9 (29,0 / 29,6)
Номинальное давление в модуле при 20°C, МПа (бар / кгс/см²)	2,5 (25,0 / 25,5)
Диаметр условного прохода ЗПУ / сифонной трубки, мм	25/25
Гидравлическое сопротивление, эквивалентная длина модуля, м, не более	6,1
Остаток ГОТВ в баллоне, кг, не более	0,3
Назначенный ресурс срабатываний модуля ¹ , раз	10
Назначенный срок службы модуля ¹ , лет, не менее	10
Срок службы модуля, лет, не менее	50
Периодичность освидетельствования баллона модуля ² , лет, не более	15
Технические условия на модуль	4854-001-76585836-08 изм.1

¹ После выработки назначенного ресурса срабатываний или по достижении назначенного срока службы проводится капитальный ремонт модуля. После проведения капитального ремонта назначенный ресурс срабатываний и назначенный срок службы восстанавливаются.


 $^{^{2}}$ Периодичность технического переосвидетельствования баллона приводится в паспорте на баллон.

		Размеры, мм			Масса модуля	
Артикул	Тип модуля	Вместимость модуля, л	L	L1	Н	без ГОТВ и кожуха защитного, кг
402306	MΠA-NVC1230 (30-8-25)	8	400	311	431	13
402290	MΠA-NVC1230 (30-16-25)	16	594	505	625	18
402307	MΠA-NVC1230 (30-20-25)	20	658	569	689	19
402299	MΠΑ-NVC1230 (30-32-25)	32	925	836	956	26

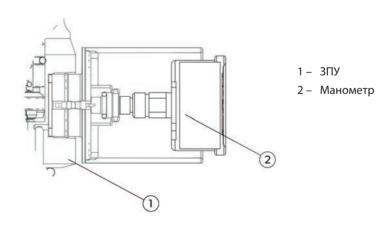
2.3 Кожух защитный

Кожух защитный предназначен для защиты запорно-пускового устройства модуля и его компонентов от механических повреждений при транспортировке, хранении и выполнении монтажных работ. Кожух фиксируется на верхней части модуля за проушины баллона. Крепежные элементы для кожуха защитного входят в комплект изделия. В зависимости от типоразмера модуль газового пожаротушения доукомплектовывается соответствующим кожухом защитным.

		D	Разме	ры, мм	
Артикул	Наименование при заказе	Вместимость баллона, л	D	Н	Масса, кг
242028	Кожух защитный D254 H240	832	254	240	3,2
402049	Кожух защитный D410 H300	52180	376	300	5,9

2.4 Манометр

Манометр предназначен для визуального контроля давления в модуле.


Манометр является средством измерения и подлежит периодической поверке.

Общие параметры				
Класс точности	Номинальный диаметр, мм			
1.5	50			

	Артикул	Наименование при заказе	Гидроза- полнение	Температура эксплуатации, °С	Степень защиты	Совместимые модули
40 60 10 10 10 10 10 10 10 10 10 10 10 10 10	728008	Манометр МП50НЛ/Т-10,0МПа/кгс/ см2-1,5-М14х1/М10х1-ЧрК5,0МПа	нет	от минус 60 до 60	IP65	ΜΠΑ-NVC1230 (50-X2-50)
1200 00 00 00 00 00 00 00 00 00 00 00 00	728019	Манометр МП50НЛ/Т-6,0МПа/кгс/ см2-1,5-М14х1/М10х1-ЧрК3,0МПа	нет	от минус 60 до 60	IP65	МПА-NVC1230 (30-X2-25/50)
10 15 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	728024	Манометр МП40МН/Т-25бар- 1/8NPT-ЧрК21-ГКПТ_1_МП40МН	нет	от минус 60 до 60	IP40	ΜΠΑ-NVC1230 (21-X2-15)

• Манометр устанавливается на запорно-пусковом устройстве через ниппельный клапан, что обеспечивает возможность его демонтажа для периодической поверки или замены.

Пример подключения манометра

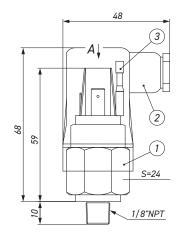
2.5 Датчик давления

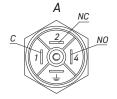
Датчики давления служат для контроля давления в модулях газового пожаротушения и сигнализации о неисправности в случае падения давления.

По способу формирования сигнала датчики разделяются на дискретный (переключающийся «сухой контакт») и аналоговый с унифицированным сигналом 4-20 мА (преобразователь давления).

2.5.1 Реле давления

Датчик (реле) давления является дискретным датчиком и предназначен для выдачи сигнала о падении давления в модуле ниже установленного значения. В стандартном варианте давление срабатывания датчика устанавливается на 20 % ниже номинального давления в модуле, что условно соответствует давлению в модуле при температуре минус 20°С. При срабатывании осуществляется переключение контакта реле. Датчик (реле) давления не является средством измерения и не подлежит поверке.

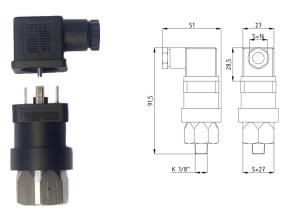

| Датчик (реле) давления MS50SCBS18NPT

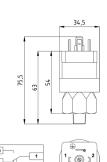


Характеристика контактов реле: 250 В / 6 А

(перем.ток); 24 В / 2 А (пост.ток)

- 1 Реле давления
- 2 Колпачок CAP131
- 3 Кабельная клемма²
- ¹ Колпачок САР 13 может быть заказан отдельно в случае утраты или повреждения (арт. 402130).
- 2 Кабельные клеммы не входят в комплект поставки реле.

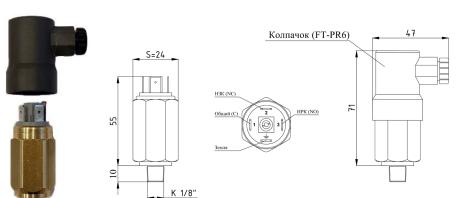

С (1) – общий контакт (0)


NC (2) – нормально замкнутый контакт (НЗК)

NO (3) – нормально разомкнутый контакт (HPK)

Артикул	Наименование при заказе	Давление срабатывания, бар	Температура эксплуатации, °C	Степень защиты (с CAP13)	Применение в модулях МПА-NVC1230
	Датчик давления MS50SCBS18NPT с калибровкой (34)	34			(50-X2-50)
402321	Датчик давления MS50SCBS18NPT с калибровкой (20)	20	от минус 30 до 50	IP65	(30-X2-25/50)
	Датчик давления MS50SCBS18NPT с калибровкой (15)	15			(21-X2-15)

Датчик (реле) давления LF727A (модификация: MS202407110004)



- 1 Общий контакт
- 2 Нормально замкнутый контакт (НЗК)
- 3 Нормально разомкнутый контакт (НРК)

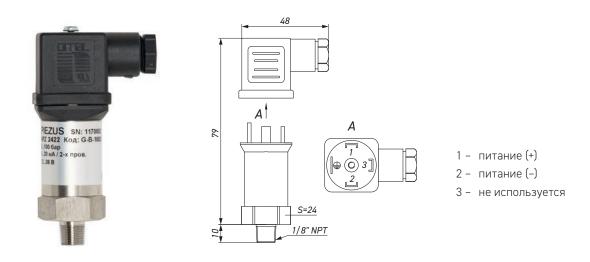
- Разъем (розетка) типа DIN 43650A входит в комплект поставки датчика.
- Контакту $N^Q 4$ на корпусе реле соответствует контакт $N^Q 3$ на ответной части комплектного разъема.
- На заправленном модуле контакты реле 1 и 2 разомкнуты, контакты 1 и 3(4) замкнуты.
- Характеристика контактов реле: 42B / 4A (постоянный ток).

Артикул	Наименование при заказе	Давление срабатывания, бар	Температура эксплуатации, °С	Степень защиты	Применение в модулях МПА-NVC1230
	Датчик давления LF727A с калибровкой (34)	34			(50-X2-50)
402384	Датчик давления LF727A с калибровкой (20)	20	от минус 40 до 60	IP65	(30-X2-25/50)
	Датчик давления LF727A с калибровкой (15)	15			(21-X2-15)

Датчик (реле) давления PR7 MP 1/8 NPT (модификация: FT-PR7MP5018NPTS/FT-KT012)

- С (1) общий контакт (0)
- NC (2) нормально замкнутый контакт (НЗК)
- NO (3) нормально разомкнутый контакт (HPK)

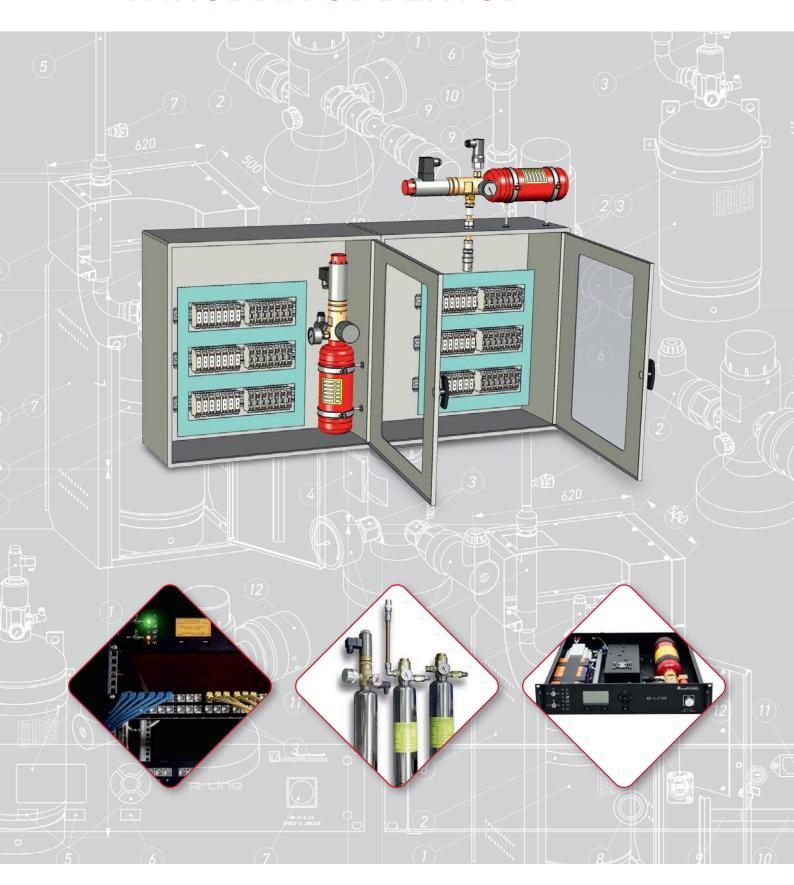
- На заправленном модуле контакты реле 1 и 2 разомкнуты, контакты 1 и 3 замкнуты.
- Характеристика контактов реле: 240 В / 5 А (переменный ток); 24 В / 2 А (постоянный ток).
- Колпачок FT-PR6 может быть заказан отдельно (арт. 402387).
- Кабельные клеммы не входят в комплект поставки датчика.


Артикул	Наименование при заказе	Давление срабатывания, бар	Температура эксплуатации, °С	Степень защиты	Применение в модулях МПА-NVC1230
	Датчик давления PR7 MP 1/8 NPT с калибровкой (34)	34			(50-X2-50)
402386	Датчик давления PR7 MP 1/8 NPT с калибровкой (20)	20	от минус 40 до 60	IP65	(30-X2-25/50)
	Датчик давления PR7 MP 1/8 NPT с калибровкой (15)	15			(21-X2-15)

2.5.2 Преобразователь давления

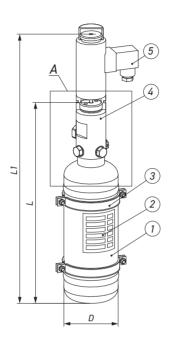
В зависимости от комплектации модуля, вместо датчика (реле) давления может быть установлен аналоговый преобразователь давления, который служит для непрерывного контроля давления в модуле (при подключении к соответствующей приемной аппаратуре).

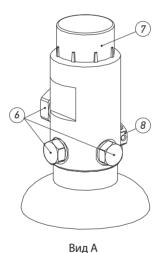
По электромагнитной совместимости преобразователи давления относится к III группе исполнения по устойчивости к помехам с критерием качества функционирования «А», согласно ГОСТ 32137.


Преобразователь давления является средством измерения и подлежат периодической поверке.

Артикул	Наименование	Диапазон	Тип выходного	Напряжение	Температура	Степень
	при заказе	измерений, бар	сигнала, мА	питания, В	эксплуатации, °С	защиты
411149	Преобразователь давления АРХ 2422	0100	420	DC 1236	от минус 40 до 125	IP65

3


ГОТОВЫЕ ТЕХНИЧЕСКИЕ РЕШЕНИЯ ДЛЯ ЗАЩИТЫ ТИПОВЫХ ОБЪЕКТОВ



.1 Модуль газового пожаротушения МПА-NVC1230 (21-1...2-15) (Г)

Модули могут применяться для противопожарной защиты закрытых шкафов, отсеков с электронным или электротехническим оборудованием (коммуникационные шкафы, электрические шкафы, шкафы управления и т.п.) и других ограниченных объемов.

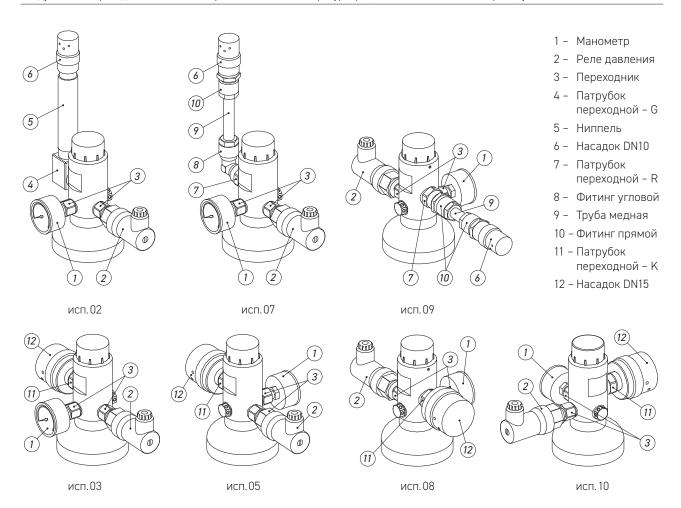
МАТЕРИАЛ ИЗГОТОВЛЕНИЯ

- Баллон: нерж. сталь / сталь
- ЗПУ: латунь
- Труба сифонная: алюминий
- 1 Баллон
- 2 Шильд
- 3 Хомут для крепления модуля¹
- 4 ЗПУ
- 5 Электромагнитный привод ЕА45М2
- 6 Заглушка присоединительного порта³
- 7 Транспортировочный колпачок
- 8 МПУ
- ¹ Не входит в комплект поставки модуля. Для крепления модуля необходимо 2 хомута.
- 2 Не входит в комплект поставки, см. раздел 4.
- ³ Комплектация зависит от исполнения модуля. Текущая комплектация приведена для исп. 00.

Обозначение при заказе:

Модуль газового пожаротушения МПА – NVC1230 (21 – X1 – 15) X2 X3, где:

МПА – NVC1230 – наименование модуля, принятое заводом-изготовителем;


- 21 рабочее давление, бар;
- Х1 вместимость баллона, л (1;2);
- 15 диаметр условного прохода ЗПУ, мм;
- Х2 обозначение горизонтального исполнения модуля (Г);
- ХЗ обозначение исполнения модуля.

Наименование показателей	3	начение		
Наименование модуля	MΠA-NVC (21-1-15) (Γ)	MΠA-NVC (21-2-15) (Γ)		
Вместимость баллона, л	1,1	1,55		
Масса ГОТВ, кг (стандартная заправка) – Novec 1230 (ФК-5-1-12) – Хладон 227ea	1 1	2 1,7		
Рабочее давление в модуле при 50°C, МПа (бар / кгс/см²)	2,1	(21,0 / 21,4)		
Рабочий диапазон температуры эксплуатации, °C	ОТ МИ	от минус 40 до 50		
Остаток ГОТВ в баллоне не более, кг		0,05		
Тип используемых насадков ¹	DN15 (1/2	2") / DN10 (3/8")		
Габаритные размеры модуля ² – диаметр баллона (D), мм – высота (L), мм – высота с установленным электропуском (L1), мм	82 358 462	82 456 560		
Назначенный ресурс срабатываний модуля ³ , раз		10		
Назначенный срок службы модуля ³ , не менее, лет		10		
Срок службы модуля, не менее, лет		50		
Масса модуля без ГОТВ ² , кг	2,2	2,5		

¹ Для исполнений модулей, содержащих в комплекте насадки, предусмотренные для совместной эксплуатации, не требуется проведения гидравлического расчета. Модуль следует использовать как законченное изделие.

³ После выработки назначенного ресурса срабатываний или по достижении назначенного срока службы проводится капитальный ремонт модуля. После проведения капитального ремонта назначенный ресурс срабатываний и назначенный срок службы восстанавливаются.

Основной состав комплектующих модулей МПА-NVC1230 (21-X1-15) (Г), доступных для заказа

² Массогабаритные параметры приведены для модуля исп. 00. Для модулей других исполнений данные параметры приведены в Руководстве по эксплуатации на изделие.

				Дат давл			Вариан	т комплектации	
Артикул	Наименование модуля	Исполнение	Манометр	Дискретный (MS50SCBS18NPT)	Аналоговый преобразователь давления	- Насадок DN15 (1/2″) - Патрубок переходной 3/4″- 20 UNS (UNEF) - К 1/2″	- Насадок DN10 (3/8″) - Нипель R 1/2″-3/8″ -Патрубок переходной 3/4″- 20 UNS (UNEF) - G 1/2″	- Насадок DN10 (3/8″), - Фитинг прямой 12-3/8″ (НР), - Труба медная 12ми, - Фитинг угловой 12-3/8″ (НР), - Патрубок переходной 3/4″- 20 UNS (UNEF) - R 3/8″	- Насадок DN10 (3/8"), - Фитинг прямой 12-3/8" (НР), - Труба медная 12мм, - Патрубок переходной 3/4"- 20 UNS (UNEF) - R 3/8" Пр
		01	_	_	٧	_	V	_	_
		02	V	٧	_	_	V	-	_
		03	V	V	_	V	_	_	_
		04	_	_	V	V	_	_	_
402312	ΜΠΑ-NVC1230 (21-2-15) (Γ)	05	V	٧	_	V	_	_	_
402312	MITA-NVC1230 (21-2-15) (I)	06	_	_	V	_	_	V	_
		07	V	٧	_	_	_	V	_
		08	V	V	_	V	_	_	_
		09	V	V	_	_	_	_	V
		10	V	V	_	V	_	_	_

3.2

Автономное устройство газового шкафного пожаротушения (АУШТ) R-Line

АУШТ R-Line представляет собой автономное устройство газового пожаротушения, смонтированное внутри 19" (480 мм) корпуса высотой 2U (88 мм), предназначенное для раннего обнаружения возгораний и приведения в действие встроенной системы газового пожаротушения на основе огнетушащего вещества ФК-5-1-12 в коммуникационных стойках, напольных (настенных) шкафах и аналогичном оборудовании, со стандартным размером 19".

Каждое устройство R-Line имеет возможность подключения концевого выключателя двери и внешнего устройства активации встроенной системы пожаротушения, а также выходы для интеграции в инженерные цепи и отключения силового оборудования посредством «сухого» контакта.

Система пожаротушения R-Line разработана для защиты от возгорания серверных стоек и коммуникационных шкафов. Устройство полностью автономно – размещается внутри стандартного 19-дюймового шкафа.

Раннее обнаружение возгораний осуществляется аспирационной системой классов A и B по EN54-20 на основе двух дымовых извещателей, с компенсацией запыленности.

В процессе пожаротушения обеспечивается штатная работа и нормальное функционирование активного IT-оборудования.

Наименование показателей	Значение
Электропитание: напряжение, частота	~220 В, 50 Гц
Потребляемая мощность, Вт, не более	55
Резервное питание, не менее, ч	24 ч в дежурном режиме и 3 ч в режиме Пожар
Температура эксплуатации, °C	от -10 до 50
Климатическое исполнение	УХЛ 3.1 по ГОСТ15150-69
Степень защиты оболочки	IP31
Защищаемый объем системой пожаротушения, м³, не более	3,0
Параметр негерметичности, м-1, не более	0,022
Габаритный размер, мм	480(19") x 88(2U) x 640
Масса, кг, не более	22
Срок службы, не менее, лет	10

Артикул	Наименование при заказе	Описание
		Подключение внешних устройств: - вход для подключения устройства дистанционной активации пожаротушения - вход для подключения концевого датчика двери
409001	Автономное устройство газового шкафного пожаротушения AУШТ R-Line	Выходные реле: - «Авария» (24В, 1 А) - «Питание» (24В, 1 А) - «Внимание» (24В, 1 А) - «Пожар» (24В, 1 А) - «Автоматика отключена» (24В, 1 А) - «Пожаротушения» (24В, 1 А)
		Три дополнительных силовых реле (220 В, 10 А)
409021	Автономное устройство газового шкафного пожаротушения	Сетевое исполнение с поддержкой интерфейса RS-485, позволяющее произвести интеграцию в инженерные системы безопасности здания на базе устройств «Спрут-2»
	АУШТ R-Line-RS	Количество устройств в сети RS-485: не более 32
409005	Автономное устройство газового шкафного пожаротушения AYШT R-Line-IP	Сетевое исполнение с поддержкой TCP/IP, позволяющее произвести интеграцию в инженерные системы безопасности здания по протоколу SNMP

Примечания

- 1) Разъем для подключения кабеля Ethernet предусмотрен только на АУШТ исполнения IP. В АУШТ иных исполнений вместо разъема установлена заглушка.
- 2) Графическое отображение контактов реле на задней панели указано для нормальной работы устройства (дежурный режим, отсутствие неисправностей).
- 3) Отдельные исполнения АУШТ могут иметь иную конфигурацию подписей на задней панели.

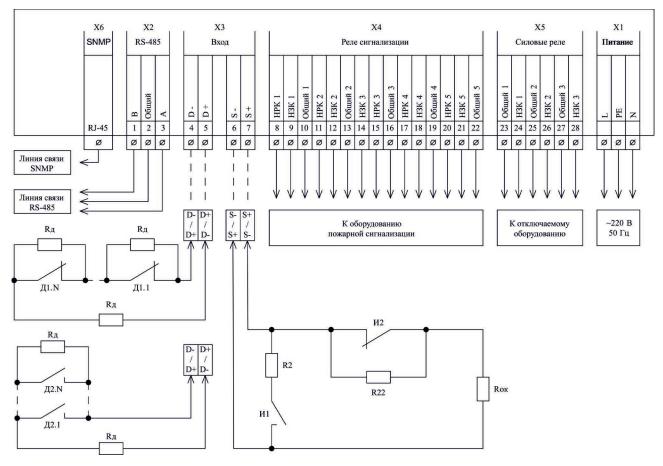


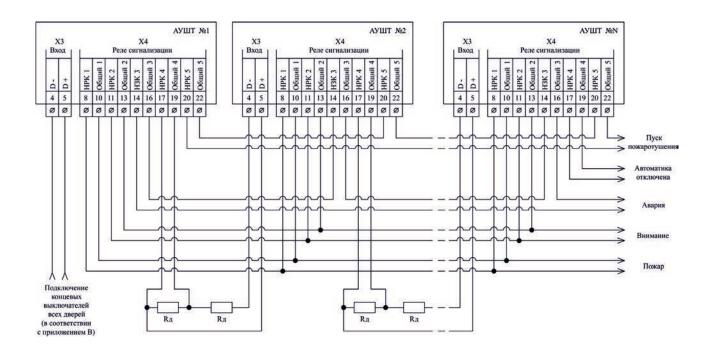
Схема подключения AУШТ R-line

- 1. Линия связи SNMP (X6) доступна только для АУШТ исполнения IP.
- 2. Линия связи RS-485 (X2) доступна только для АУШТ исполнения RS.
- 3. Пусковой шлейф (X3 S):
- И1 Нормально разомкнутые ручные извещатели и/или кнопки (активные токопотребляющие извещатели или извещатели с нормально разомкнутым «сухим контактом»);
- И2 Нормально замкнутые ручные извещатели и/или кнопки (извещатели с нормально разомкнутым «сухим контактом»);
- Количество извещателей и/или кнопок с «сухим контактом» не ограничивается. Для активных извещателей суммарный ток потребления не должен превышать 1,0 мА;
- Rok = $4.7 \text{ kOm} \pm 5 \%$;
- R2 = $1,5 \text{ kOm} \pm 5 \%$;
- R22 = $8,2 \text{ kOm} \pm 5 \%$.
- 4. Шлейф датчиков двери (X3 D):
- Д1.1- Д1.N Нормально замкнутые датчики двери;
- Д2.1- Д2.N Нормально разомкнутые датчики двери;
- Количество нормально замкнутых датчиков в шлейфе не более пяти. Количество нормально разом-кнутых датчиков в шлейфе не ограничено;
- Rд = 510 Ом ± 5 %;
- В шлейфе должны устанавливаться или нормально замкнутые, или нормально разомкнутые датчики (одновременное использование нормально замкнутых и нормально разомкнутых датчиков в шлейфе не предусмотрено);
- Указанные схемы с дополнительными резисторами справедливы для активированного контроля исправности шлейфа.

Если при программировании контроль исправности шлейфа отключен, то резисторы не устанавливаются.

Особенности коммутации и подключения устройств любых исполнений.

Устройство может быть подключено в соответствии с проектным решением и иметь схемы подключения, не приведенные в настоящем руководстве. В случае затруднений рекомендуется обратиться к изготовителю.


При подключении дополнительных элементов и устройств следует принимать во внимание следующую особенность:

• в случае использования промежуточных электромагнитных реле, в обязательном порядке необходимо использовать элементы защиты от ЭДС самоиндукции (например, диод или варистор). В противном случае возможны неисправности, некорректная работа или выход оборудования из строя.

Особенности объединения и работы устройств исполнения RS, соединенных шлейфом RS-485.

В случае объединения сетевых исполнений изделия для работы в одном объеме (одновременное срабатывание всех изделий), один из возможных вариантов коммутации выходов приведен на схеме. Также допускается расключения устройств с применением вспомогательного оборудования и приборов. При подключении устройств следует принимать во внимание следующие особенности:

- в случае объединения устройств по сети RS-485, необходимо соблюдать требования п.7.7 из рукодоства по эксплуатации, в том числе в части подключения/отключения шунтирующих резисторов на плате;
- в случае объединения устройств по сети RS-485, передача сигналов (переключение контактов реле) «Внимание» и «Пожар», а также зажигание соответствующих индикаторов осуществляется только на устройстве, которое непосредственно перешло в данный режим.

Вариант схемы расключения устройств, объединенных по сети RS-485

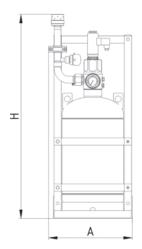
Примечание - при необходимости может потребоваться использование резисторов для контроля линий на обрыв и короткое замыкание (выбор и подключение резисторов – в соответствии с прибором, к которому осуществляется подключение выходных сигналов).

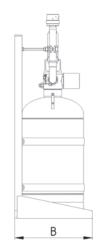
3.2.1 Дополнительное оборудование

Артикул	Наименование при заказе	Описание
402131	МПА-ULT (21-2-15) Г исп.01	Резервный модуль пожаротушения для АУШТ
411058	Электромагнитный привод ЕА45М	Электромагнитный привод для активации модуля пожаротушения АУШТ
409019	Направляющие для шкафов до 600 мм	Салазки телескопические для монтажа АУШТ в стойку глубиной до 600 мм
409020	Направляющие для шкафов от 600 до 1000 мм	Салазки телескопические для монтажа АУШТ в стойку глубиной от 600 до 1000 мм
409018	Ключ запасной для АУШТ R-Line	Ключ для включения и/или управления автоматикой АУШТ
409017	Комплект сменных фильтров для AYШT R-Line	Фильтры грубой и тонкой очистки для камеры обнаружения дыма
409026	Комплект аккумуляторов стандартной емкости для АУШТ R-Line	Аккумулятор стандартной емкости для АУШТ
409027	Комплект аккумуляторов увеличенной емкости для АУШТ R-Line	Аккумулятор увеличенной емкости для АУШТ
507001	Труба АБС гладкая для аспирационной системы D25/22 цвет красный	Воздухозаборная труба для камеры обнаружения дыма
507005	Тройник АБС для аспирационной системы D25 цвет красный	Тройник для воздухозаборной трубы
507004	Поворот 90гр АБС для аспирационной системы D25 цвет красный	Поворот 90 градусов для воздухозаборной трубы
507006	Заглушка АБС для аспирационной системы D25 цвет красный	Заглушка для воздухозаборной трубы
507061	Клей для АБС	Клей для соединения элементов воздухозаборной трубы

ПРИМЕЧАНИЕ:

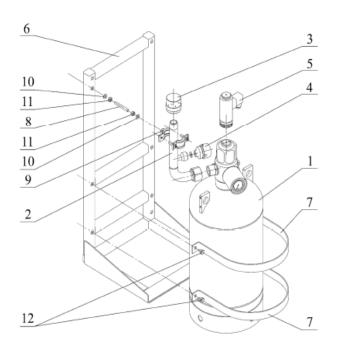
¹Перед заказом резервного модуля пожаротушения, для приобретенного ранее АУШТ, необходимо проконсультироваться с предприятием-изготовителем АУШТ.


3.3 Комплект подвесного модуля «ТУЧИГА»


Комплект подвесного модуля (КПМ) «Тучига» предназначен для упрощения процесса проектирования и выполнения монтажных работ. КПМ применяется для защиты помещений без скрытых зон тушения, таких как объем за фальшполом или подвесным потолком. Монтаж КПМ осуществляется без распределительного трубопровода и его опрессовки, что снижает затраты на установку и ввод в эксплуатацию.

КПМ поставляется комплектно. В изделие применен пристенный насадок (с сектором распыла 180°) с сохранением всех характеристик насадков, применяемых в модульных установках пожаротушения. Насадок должен быть сориентирован в защищаемом помещении с учетом его геометрии и обеспечивать распределение ГОТВ по всему объему помещения.

Выпускной трубопровод в составе комплекта поставляется как готовое к установке изделие. Выбор диаметра и длины трубопровода, а также подбор характеристик насадка осуществляется по результатам гидравлического расчета.



Общий вид комплекта в сборе

- 1 Модуль газового пожаротушения;
- 2 Трубопровод;
- 3 Насадок;
- 4 Сигнализатор давления универсальный;
- 5 Электромагнитный привод;
- 6 Опора настенная;
- 7 Хомут;
- 8 Шпилька;
- 9 Хомут трубный;
- 10 Шайба;
- 11 Гайка;
- 12 Болт M8x20 c шайбой.

МАТЕРИАЛ ИЗГОТОВЛЕНИЯ

- Баллон: сталь 09Г2С
- ЗПУ: латунь
- Труба сифонная: алюминий

Обозначение при заказе:

Комплект подвесного модуля КПМ-X1-X2-X3-X4, где:

- КПМ условное обозначение, принятое изготовителем;
- Х1 вместимость модуля газового пожаротушения, л (8, 16, 20, 32);
- Х2 максимально допустимое рабочее давление, кгс/см2 (30);
- ХЗ условная высота насадка относительно нижней точки изделия (мм);
- X4 используемое ГОТВ (01 Sineco1230 (ФК-5-1-12); 02 Хладон 227; 04 Хладон 125).

Технические характеристики комплекта

Наименование параметра		Зна	чение	
1	2	3	4	5
Модификация комплекта	КПМ-8-30-585-X4	КПМ-16-30-775-Х4	КПМ-20-30-840-X4	КПМ-32-30-1110-X4
Вместимость модуля, л	8	16	20	32
Масса ГОТВ в модуле, кг: - Sineco1230 (ФК-5-1-12) - Хладон 227 - Хладон 125	9,0 8,0 7,0	19,0 17,0 14,0	24,0 22,0 18,0	38,0 35,0 28,0
Давление в модуле при 20°C, МПа (бар / кгс/см²) Максимально допустимое рабочее давление модуля, МПа (бар / кгс/см²)	2,5 (25,0 / 25,5) 2,9 (29,4 / 30,0)			
Защищаемый объем ¹ , м ³ , не более: - Sineco1230 (ФК-5-1-12) - Хладон 227 - Хладон 125	10,8 10,4 8,8	24,8 22,0 17,0	34,0 33,4 26,8	55,6 55,0 43,4
Тип устройства пуска	Электромагнитный привод			
Напряжение питания постоянного тока, В	24 ± 5			
Номинальная сила тока, А	0,25 ± 0,05			
Тип насадка Угол распыла насадка, °	радиальный 180			

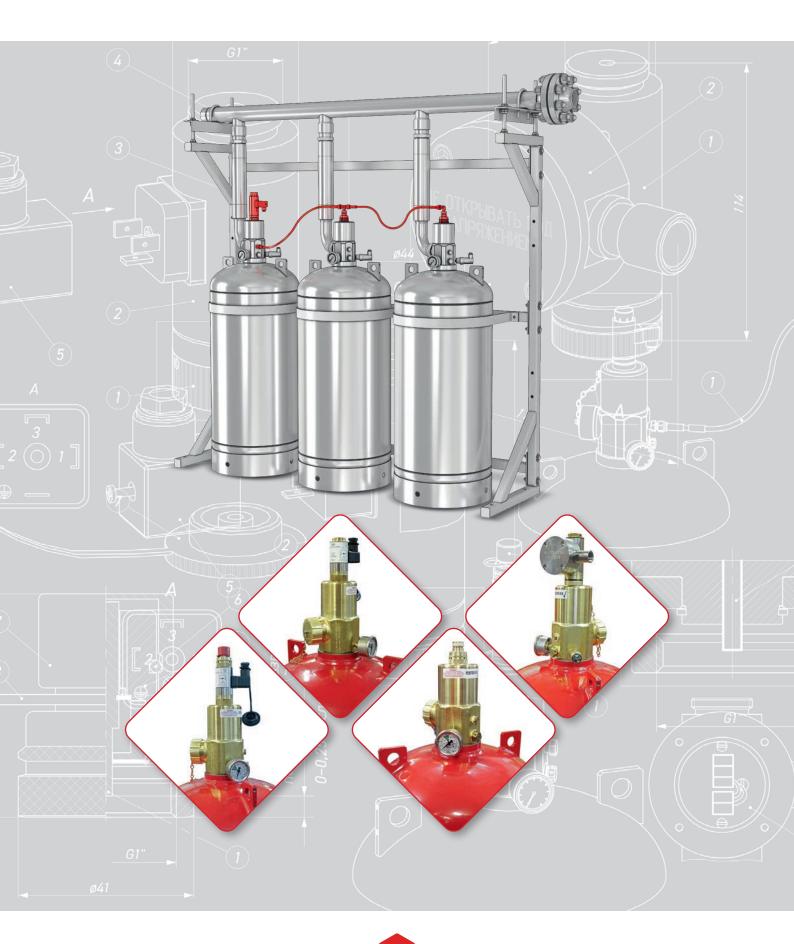
Продолжение таблицы

Наименование параметра		Знач	ение		
1	2	3	4	5	
Радиус распыла насадка, м: - Sineco1230 (ФК-5-1-12) - Хладон 227 - Хладон 125	10,9 10,0 4,0				
Устройство визуального контроля давления		манс	метр		
Устройство дистанционного контроля давления		датчик давления	(реле давления)2		
Давление срабатывания (при снижении давления), МПа (бар)		2,0 ± 0,2 (20 ± 2)			
Устройство дистанционного контроля пуска ГОТВ	сигнализатор давления универсальный СДУ-М				
Габаритный размер изделия, мм, не более – ширина (A) – глубина (B) – высота (H)	350 320 590	350 320 780	350 320 845	350 320 1115	
Номинальная масса изделия (без ГОТВ), кг	23 ± 10 %	35 ± 10 %	37 ± 10 %	48 ± 10 %	
Масса изделия, заправленного ГОТВ, кг, не более	35	58	65	91	
Остаток ГОТВ в баллоне, кг, не более		0	,3		
Назначенный ресурс срабатываний модуля, раз, не менее	10				
Периодичность освидетельствования баллона модуля, лет, не менее		1	0		
Максимальная температура эксплуатации, °C: – Sineco1230 (ФК-5-1-12) – Хладон 227 – Хладон 125	50 40 30				
Срок службы, лет, не менее		10			

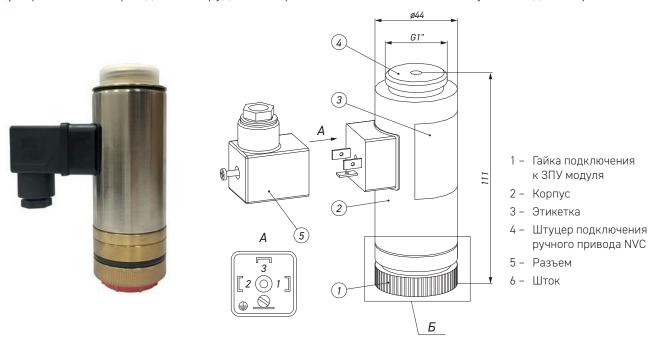
ПРИМЕЧАНИЕ:

¹ Максимально допустимый защищаемый объем принят исходя из температуры в защищаемом помещении не более 20 °С, площади постоянно открытых проемов не более 0,17 м2 и класса пожара A2. Максимально допустимый защищаемый объем для других температурных условий приведен в таблице 2. В случае необходимости использования параметров установки, не указанных в настоящем руководстве, необходимо выполнять расчеты массы ГОТВ в соответствии с СП 485.1311500.2020 либо обратиться к производителю.

³По согласованию с производителем и проведением дополнительных расчетов в соответствии с СП 485.1311500.2020 возможна эксплуатация установки при более низких температурах.


Артикул	Наименование при заказе	Вместимость модуля, л	Описание	
402355	Комплект подвесного модуля КПМ-8-30-585-X4	8		
402356	Комплект подвесного модуля КПМ-16-30-775-X4	16	Комплект подвесного модуля (КПМ) «Тучига» для объемного	
402357	Комплект подвесного модуля КПМ-20-30-840-X4	20	тушения	
402358	Комплект подвесного модуля КПМ-32-30-1110-X4	32		

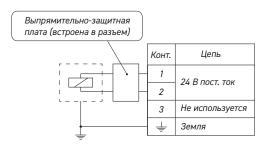
 $^{^2}$ По отдельному заказу возможна комплектация модуля вместо реле давления аналоговым датчиком давления (4-20 мA), позволяющий осуществлять дистанционный контроль значения давления в модуле.

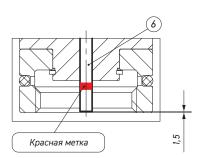

4

ПУСКОВЫЕ УСТРОЙСТВА

Электромагнитный привод ЕА45М

Электромагнитный привод EA45M устанавливается на запорно-пусковое устройство и предназначен для активации модуля пожаротушения посредством преобразования электрической энергии в механический импульс. ЕА45М имеет индикацию состояния и защиту от переполюсовки, что снижает вероятность повреждения оборудования при выполнении монтажных и пусконаладочных работ.


• Для индикации состояния электропривода на его пусковом штоке предусмотрена красная сигнальная метка, позволяющая визуально определить его положение «Взведен» / «Сработал». Расположение красной метки в зоне видимости свидетельствует о сработавшем устройстве.

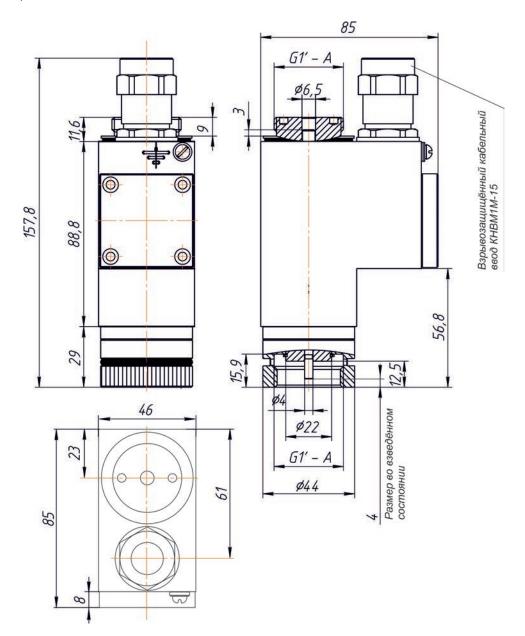

МАТЕРИАЛ ИЗГОТОВЛЕНИЯ

- Корпус: никелированная сталь
- Присоединительные порты: латунь ЛС59 ГОСТ 2060

- Затяжку устройства производить от руки до упора.
- Установка электропривода в положении «Сработал» на запорно-пусковое устройство модуля, находящегося под давлением, строго запрещена.

G1" 5,1

Электрическая схема расключения

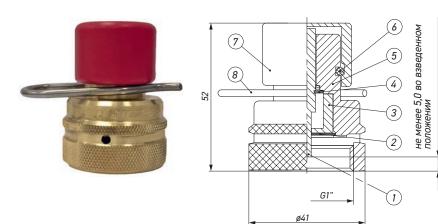

Вид Б. Положение «Взведен»

Вид Б. Положение «Сработал»

		Параметры	ы электротехнического	пуска	Температура	Степень	
Артикул	Наименование при заказе	Номинальное напряжение, В	Ток проверки цепи, не более, А	Сила тока, А	эксплуатации, °С	защиты	Масса, кг
411058	Электромагнитный привод EA45M	24 ± 5 (пост. тока)	0,025	0,25	от минус 40 до 50	54	1,1

4.2 Электромагнитный привод (соленоид) ЕА45Ех

Электромагнитный привод EA45Ex является взрывозащищенной версией EA45M и имеет маркировку взрывозащиты 1Ex mb db II 7 6 Gb.

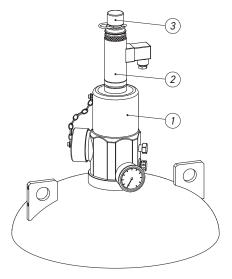


• Рекомендуемый диаметр кабеля фиксируемого в кабельном вводе от 6 до 12 мм.

		Параметры	ы электротехнического	пуска	Температура		
Артикул	Наименование при заказе	Номинальное напряжение, В	Ток проверки цепи, не более, А	Сила тока, А	эксплуатации, °C	Степень защиты IP	Масса, кг
411135	Электромагнитный при- вод (соленоид) EA45Ex	24 (пост. тока)	0,025	0,25	от минус 40 до 55	65	???

4.3 Ручной привод (локальный) NVC

Предназначен для активизации запорно-пускового устройства модуля нажатием кнопки ручного привода. Для предотвращения случайного нажатия предусмотрена чека, входящая в комплект устройства.



- 1 Шток
- 2 Стопорное кольцо
- 3 Вставка
- 4 Стопорное кольцо
- 5 Корпус
- 6 Манжетное уплотнение
- 7 Кнопка
- 8 Чека

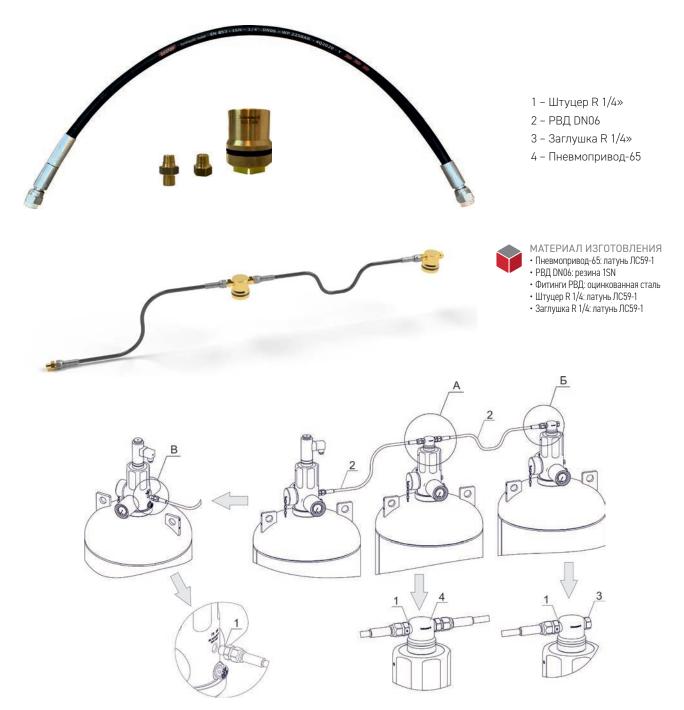
0-0,25 после срабатывания

- Ручной привод, как правило, устанавливается на электромагнитные приводы типа ЕА45М / EA45Ex.
- Затяжку устройства производить от руки до упора.
- Перед установкой необходимо убедиться, что устройство не находится в пусковом положении (высота от конца штока до основания должна составлять не менее 5 мм). Взведение осуществляется путем утапливания штока пальцем руки.

- 1 ЗПУ модуля
- 2 Электромагнитный привод
- 3 Ручной привод

Артикул	Наименование	Усилие нажатия,	Температура	Масса,
	при заказе	Н	эксплуатации, °С	кг
402022	Ручной привод (локальный) NVC	25,5	от минус 20 до 50	0,26

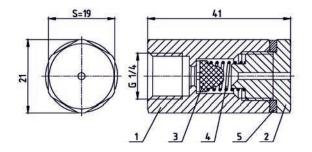
Пневмопуск ПН-65

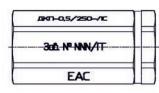

Предназначен для активации запорно-пусковых устройств ведомых модулей, пневматическим давлением, создаваемым ведущим модулем пожаротушения. Устройство позволяет объединить группу от 2-х до 10-ти модулей для их одновременного запуска.

Пневмопуск поставляется комплектом от 2 до 10 модулей и включает в себя все необходимые компоненты (пневмоприводы, фитинги и рукава высокого давления) для подключения требуемого количества модулей пожаротушения.

Подбор пневмопуска осуществляется исходя из количества одновременно запускаемых модулей газового пожаротушения включая ведущий и ведомые модули. Так для одновременного запуска группы из 3-х модулей (1 ведущий и 2 ведомых) необходимо предусматривать пневмопуск на 3 модуля.

+7 495 540-41-04




		Давление пневматі	ического пуска, бар	T	M
Артикул	Наименование при заказе	минимальное	максимальное	Температура эксплуатации, °С	Масса, кг
415226	Пневмопуск ПН-2/65				0,5
415225	Пневмопуск ПН-3/65	4,0 56,0 от минус 40 до 50	1,0		
415224	Пневмопуск ПН-4/65			1,5	
415223	Пневмопуск ПН-5/65		2,0		
415222	Пневмопуск ПН-6/65		56,0		2,5
415221	Пневмопуск ПН-7/65		3,0		
415036	Пневмопуск ПН-8/65				3,5
415037	Пневмопуск ПН-9/65				4,0
415227	Пневмопуск ПН-10/65				4,5

4.4.1 Дренажный клапан пневмопуска ДКП-0,5/250

Клапан предназначен для предотвращения возникновения избыточного давления в линии пневматического пуска модулей пожаротушения при незначительных утечках давления из модулей

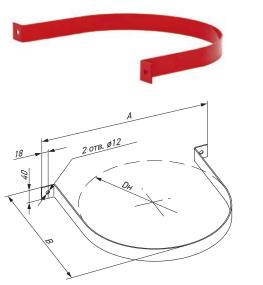
- 1 Корпус
- 2 Крышка
- 3 Запирающий элемент
- 4 Пружина
- 5 Резинометаллическое уплотнение

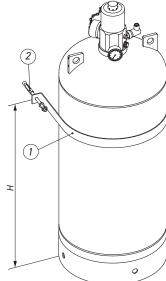
Общий вид клапана изделия

Пример подключения дренажного клапана

Артикул	Наименование	Давление	Давление	Масса,
	при заказе	рабочее, бар	закрытия, бар	кг
402329	Дренажный клапан пневмопуска ДКП-0,5/250	250	0,5	0,1

+7 495 540-41-04


5


ОБОРУДОВАНИЕ ДЛЯ КРЕПЛЕНИЯ МОДУЛЕЙ



5.1 Кронштейн баллона

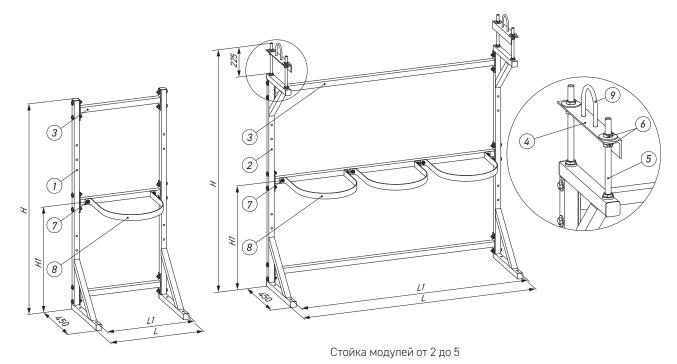
Кронштейн баллона предназначен для крепления модуля газового пожаротушения к стене или опорной конструкции.

- 1 Кронштейн баллона
- 2 Крепежные элементы1
- ¹ Не входят в комплект поставки. Подбор крепежа должен производиться исходя из материала стены или опорной конструкции, к которой осуществляется крепление модуля.

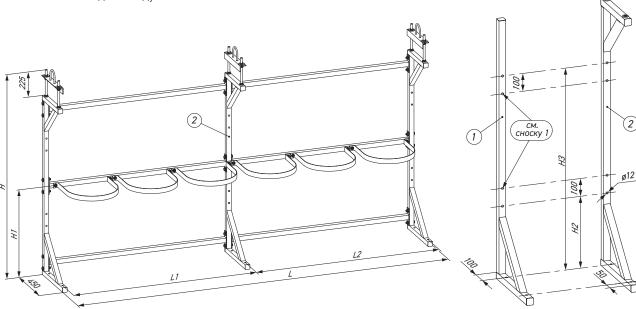
		D		Разме	ры, мм		Macca
Артикул	Наименование при заказе	Вместимость баллона, л	Н	А	В	Dн	Масса, кг
		8	130		252		
402033	//na	16	230	338		254	0.70
402033	Кронштейн баллона 254	20	350				0,68
		32	500				
		52	340		408	410	
402035	//na	106	750	494			101
402033	Кронштейн баллона 410	147	1000				1,06
		180	1200				

5.2 Стойка модуля

Стойка используется при невозможности крепления модулей и коллектора к стене. Высота расположения коллектора регулируется перемещением уголка по шпильке М16 и фиксируется гайками М16. Крепление стойки предусматривается к полу/стене.


Обозначение при заказе:

Стойка модуля X1*X2, где:


X1 - количество модулей в стойке, шт: от 1 до 10;

Х2 - вместимость баллона, л: 52, 106, 147, 180.

Стойка для 1 модуля

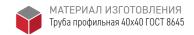
1 - Боковина 1

2 - Боковина 2 7 - Крепежные элементы

3 - Перекладина 4 - Уголок

5 - Шпилька М16

6 - Гайка М16


Стойка модулей от 6 до 10

8 - Кронштейн баллона²

9 - Хомут U-образный²

(2)

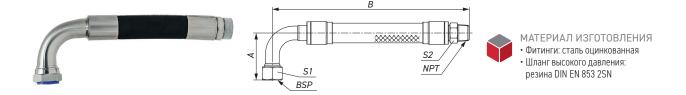
¹ Крепежные элементы не входят в комплект поставки. Подбор крепежа производится исходя из материала стены или опорной конструкции, к которой осуществляется крепление.

 $^{^{2}}$ Не входит в комплект поставки стойки и заказывается отдельно.

					Размеры, мі	М		1	
Артикул	Наименование при заказе	L	L1	L2	Н	H1	H2	Н3	Масса, кг
402283	Стойка модуля 1*16	460	430	_	830	230	_	_	9,4
402281	Стойка модуля 1*32	460	430	_	1100	500	_	_	10,5
402274	Стойка модуля 1*52	650	610	_	1000				19,5
402286	Стойка модулей 2*52	1150	1110	_					36,0
402193	Стойка модулей 3*52	1650	1610	_					41,2
402279	Стойка модулей 4*52	2150	2110	_					46,4
412140	Стойка модулей 5*52	2650	2610	_		2/0	/20	/00	51,6
412141	Стойка модулей 6*52	3120	1540	1540	1265	340	420	690	68,8
412142	Стойка модулей 7*52	3620	1540	2040					74
412143	Стойка модулей 8*52	4120	2040	2040					79,2
412144	Стойка модулей 9*52	4620	2040	2540					84,4
412145	Стойка модулей 10*52	5120	2540	2540					89,6
402276	Стойка модуля 1*106	650	610	_	1465				22,6
402202	Стойка модулей 2*106	1150	1110	_					39,1
402203	Стойка модулей 3*106	1650	1610	_					44,3
402204	Стойка модулей 4*106	2150	2110	_					49,5
402205	Стойка модулей 5*106	2650	2610	_		750	/20	1150	54,7
402206	Стойка модулей 6*106	3120	1540	1540	1725	750	420	1150	73,7
402207	Стойка модулей 7*106	3620	1540	2040					78,9
402208	Стойка модулей 8*106	4120	2040	2040					84,1
402209	Стойка модулей 9*106	4620	2040	2540					89,3
402210	Стойка модулей 10*106	5120	2540	2540					94,5
402211	Стойка модуля 1*147	650	610	_	1800				24,9
402257	Стойка модулей 2*147	1150	1110	_					41,4
402256	Стойка модулей 3*147	1650	1610	_					46,6
402188	Стойка модулей 4*147	2150	2110	_					51,8
402213	Стойка модулей 5*147	2650	2610	_		1000	/00	1/05	57,0
402214	Стойка модулей 6*147	3120	1540	1540	2060	1000	420	1485	77,2
402215	Стойка модулей 7*147	3620	1540	2040					82,4
402216	Стойка модулей 8*147	4120	2040	2040					87,6
402217	Стойка модулей 9*147	4620	2040	2540					92,8
402218	Стойка модулей 10*147	5120	2540	2540					98,0
402287	Стойка модуля 1*180	650	610	_	2065				26,7
402269	Стойка модулей 2*180	1150	1110	_		1			43,2
402275	Стойка модулей 3*180	1650	1610	_					48,4
402263	Стойка модулей 4*180	2150	2110	_					53,6
402264	Стойка модулей 5*180	2650	2610	_		1000	/00	1550	58,8
402140	Стойка модулей 6*180	3120	1540	1540	2325	1200	420	1750	80,0
402141	Стойка модулей 7*180	3620	1540	2040					85,2
402142	Стойка модулей 8*180	4120	2040	2040					90,4
402143	Стойка модулей 9*180	4620	2040	2540	1				95,6
402265	Стойка модулей 10*180	5120	2540	2540					100,8

6

ОБОРУДОВАНИЕ ДЛЯ ПОДКЛЮЧЕНИЯ МОДУЛЕЙ К ТРУБОПРОВОДУ

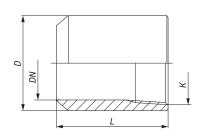


Рукав высокого давления РВД

Рукав высокого давления (РВД) предназначен для использования в качестве гибкого соединителя модуля газового пожаротушения с трубопроводом.

В зависимости от типа модуля пожаротушения применяются следующие РВД:

- DN25 используется с модулями МПА-NVC1230 (30-8...32-25);
- DN50 используется с МПА-NVC1230 (30-52...180-50) и МПА-NVC1230 (50-52...180-50).

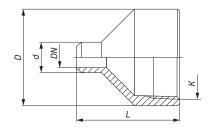


		Размеры				Рабочее	Радиус	Температура		
Артикул	Наименование при заказе	BSP, NPT, дюймы	А, мм	В, мм	S1, мм	S2, мм	давле- ние, бар	изгиба, мм	эксплуатации, °C	Масса, кг
411074	Рукав высокого давления РВД DN25	1	97	405	41	36	70	300	от минус 40	1,6
411061	Рукав высокого давления РВД DN50	2	135	520	70	65	70	630	до 70	5,2

Муфта под РВД

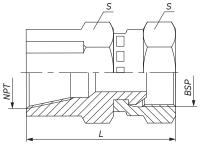
Муфта под РВД предназначена для подключения рукава высокого давления к трубопроводу, диаметры условного прохода которых идентичны.

					Размеры			
Артикул	Наименование кртикул при заказе		DN	D, мм	L, мм	Масса, кг		
212050	Муфта под РВД DN25	1	25	40	70	0,3		
212052	Муфта под РВД DN50	2	50	70	80	0,9		


Муфта переходная под РВД

Муфта переходная под РВД предназначена для подключения рукава высокого давления к трубопроводу, диаметры условного прохода которых отличаются.

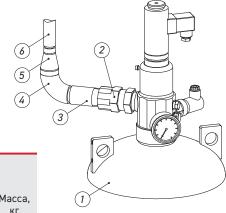
+7 495 540-41-04


				Размеры			
Артикул	Наименование при заказе	К, дюймы	DN	D, мм	d, мм	L, мм	Масса, кг
212023	Муфта переходная под РВД DN25 – DN15		15		22		0,22
212024	Муфта переходная под РВД DN25 – DN20	1	20	39	28	60	0,21
212025	Муфта переходная под РВД DN25 – DN32		32		39		0,21
212027	Муфта переходная под РВД DN50 – DN15		15		22	- - 75	0,56
212028	Муфта переходная под РВД DN50 – DN20		20		28		0,57
212029	Муфта переходная под РВД DN50 – DN25		25	70	32		0,57
212030	Муфта переходная под РВД DN50 – DN32	2	32		40		0,58
212031	Муфта переходная под РВД DN50 – DN40	1	40		48		0,59
212032	Муфта переходная под РВД DN50 – DN65	1	65	75	75		0,85

6.2 Муфта-переходник

6.2.1 Муфта-переходник NVC

Муфта-переходник NVC применяется для соединения модулей с трубопроводом в помещениях с невысокими потолками, туннелях и коллекторах в случаях, когда применение РВД невозможно или нецелесообразно. Соединение с трубопроводом производится через ниппель муфты-переходника. В зависимости от типоразмера модуля пожаротушения применяются 2 типа: DN50 и DN25.


2 - Муфта-переходник NVC

3 - Ниппель муфты переходника

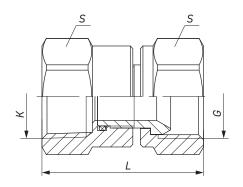
4 - Отвод ГОСТ 17375

5 - Переход ГОСТ 17378

6 - Трубопровод

МАТЕРИАЛ ИЗГОТОВЛЕНИЯ

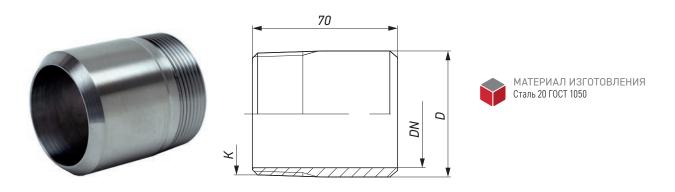
Сталь 230M07 Pb


Пример подключения муфты-переходника

			Разм	иеры		
Артикул	Наименование при заказе	BSP, NPT, дюймы	DN	L, мм	Ѕ, мм	Масса, кг
402019	Муфта-переходник NVC DN25	1	25	63,5	41	0,4
402020	Муфта-переходник NVC DN50	2	50	81,0	70	1,1

6.2.2 Муфта-переходник G х K

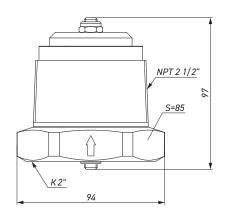
Муфта-переходник G x K является взаимозаменяемой модификацией муфты-переходника NVC.

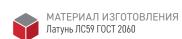


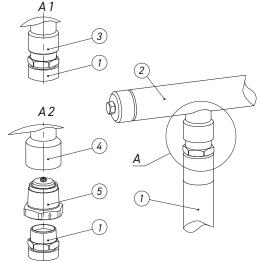
Артикул	Наименование при заказе	G, K, дюй- мы	DN	L, мм	Ѕ, мм	Масса, кг
212159	Муфта-переходник G1xK1 DN25	1	25	64	41	0,45
212160	Муфта-переходник G2xK2 DN50	2	50	78	70	1,27

6.2.3 Ниппель муфты-переходника NVC

Ниппель муфты-переходника NVC предназначен для соединения Муфты-переходника NVC или Муфты-переходника G x K с трубопроводом в случае подключения модуля газового пожаротушения к трубопроводу без рукава высокого давления.


			Размеры			
Артикул	Наименование при заказе	К, дюймы	DN	D, мм	Масса, кг	
214021	Ниппель муфты-переходника NVC DN25	1	25	64	0,45	
214022	Ниппель муфты-переходника NVC DN50	2	50	78	1,27	


6.3 Клапан обратный ОКNVC-50


Клапан обратный предназначен для обеспечения работоспособности установки газового пожаротушения при реализации алгоритма работы с не одновременной подачей ГОТВ из модулей, подключенных к общему коллектору, а также предотвращения обратного потока ГОТВ в направлении запорно-пускового устройства.

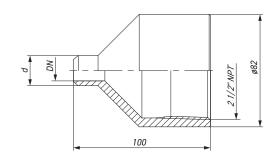
1- РВД

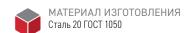
4 - Муфта NPT 2 1/2"

2 - Коллектор NVC

для K1- DN -OK

3 - Муфта К2" для К1-DN 5 - Клапан обратный


Пример подключения клапана обратного


Артикул	Наименование	Рабочее	Класс герметичности	Температура	Эквивалентная	Масса,
	при заказе	давление, бар	затвора по ГОСТ 9544	эксплуатации, °С	длина, м	кг
402244	Клапан обратный ОКNVC-50	65	А	от минус 40 до 50	6,66	1,75

.3.1 Муфта переходная NPT 2 1/2"

Муфта переходная предназначена для присоединения клапана обратного OKNVC-50 к трубопроводу в одномодульных установках без использования коллектора NVC.

		Рази	ч еры	Massa
Артикул	Наименование при заказе	DN	d, мм	Масса, кг
212110	Муфта переходная NPT 2 1/2″-DN15	15	22	0,97
212111	Муфта переходная NPT 2 1/2″-DN20	20	28	1,08
212112	Муфта переходная NPT 2 1/2″-DN25	25	32	1,15
212113	Муфта переходная NPT 2 1/2″-DN32	32	40	1,27
212114	Муфта переходная NPT 2 1/2″-DN40	40	48	1,34
212115	Муфта переходная NPT 2 1/2″-DN50	50	58	1,37

6.4 Коллектор NVC

Коллектор NVC предназначен для объединения нескольких модулей пожаротушения при подключении их к трубопроводу посредством фланцевого соединения. Коллектор применяется как в модульных, так и в централизованных установках газового пожаротушения. При необходимости подключения модулей через обратный клапан, следует применять коллекторы с маркировкой ОК.

Коллектор с маркировкой ОК имеет тип резьбы муфты – NPT 2 1/2", коллектор без соответствующей маркировки – K2".

Рабочее давление коллектора - 6,4 МПа.

Обозначение при заказе:

Коллектор **NVC K1-X1-X2-X3.П/Л,** где:

NVC K1 - наименование коллектора, принятое изготовителем (однорядный);

- X1 диаметр номинальный коллектора, DN (от 50 до 150);
- Х2 количество подключаемых модулей, N, шт (от 2 до 10);
- ХЗ подключение модулей через обратный клапан (ОК);
- П направление потока ГОТВ (расположение выходного фланца) правое;
- Л направление потока ГОТВ (расположение выходного фланца) левое.

Параметры коллектора определяются по результатам гидравлического расчета. Коллектор состоит из трубопровода заданного диаметра, фланцевых соединений и муфт для подключения модулей объемом от 52 до 180 литров. В торцевой части установлена заглушка с внутренней резьбой G1/2" для возможности установки сигнализатора давления универсального и подключения испытательного оборудования. Направление потока газового огнетушащего вещества относительно модулей пожаротушения (расположение выходного фланца) обозначается маркировкой Л (левый) и П (правый) соответственно.

¹ Клапан обратный, сигнализатор давления не входят в комплект поставки коллектора и поставляются отдельно.

В комплект поставки коллектора NVC входит:

- коллектор с муфтами для присоединения РВД или клапана обратного и фланцевым соединением;
- шпильки, гайки и прокладка для фланца;
- заглушка HP испытательная G 1/2";
- заглушка HP испытательная K2" (или NPT 2 1/2") по количеству подключаемых модулей (N).

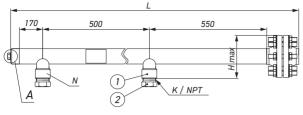


Рисунок 6.4.1 Коллектор исполнения правый

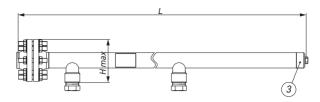


Рисунок 6.4.2 Коллектор исполнения левый Остальное см. рисунок 6.4.1

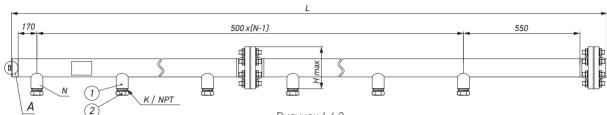


Рисунок 6.4.3 Коллектор исполнения правый

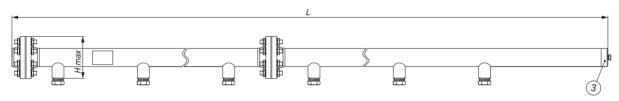
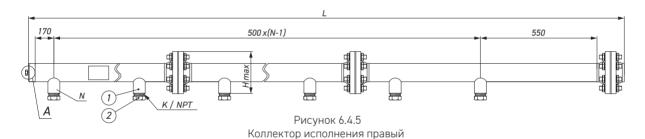



Рисунок 6.4.4 Коллектор исполнения левый. Остальное см. рисунок 6.4.3

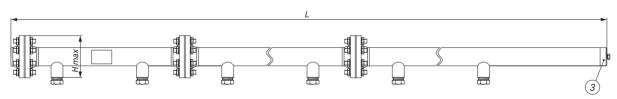
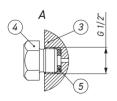
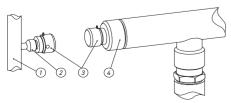



Рисунок 6.4.6 Коллектор исполнения левый. Остальное см. рисунок 6.4.5



- 1 Муфта К2″ или 2 1/2″ NPT
- 2 Заглушка НР испытательная К2" или 2 1/2" NPT
- 3 Торцевая заглушка коллектора
- 4 Заглушка HP испытательная G 1/2"
- 5 Прокладка фторопластовая

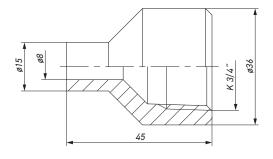
МАТЕРИАЛ ИЗГОТОВЛЕНИЯ

- Секцииколлекторахталь20ГОСТ1050
- Фланцы: сталь 20 ГОСТ 33259
- Крепление коллектора к стойке рекомендуется осуществлять при помощи U-образного хомута, который не входит в комплект поставки и заказывается отдельно.
- Возможна разработка и изготовление коллектора с индивидуальными параметрами из углеродистой или нержавеющей сталей.
- Возможна установка СДУ-М в торец коллектора. Перед монтажем необходимо демонтировать заглушку «4».

Пример установки СДУ-М

- 1 Трубопровод
- 2 Муфта СДУ-ПК G 1/2″
- 3 Сигнализатор давления СДУ-М
- 4 Торцевая заглушка коллектора NVC

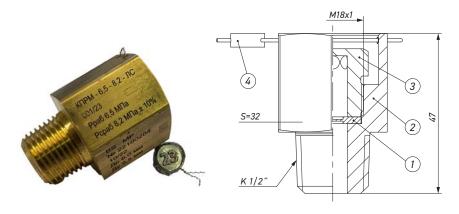
Артикул с муфтой под РВД (П/Л)	Артикул с муфтой под ОК (П/Л)	Тип коллектора	Рис.	L, мм	H max, мм	Масса с муфтой под РВД, кг	Масса с муфтой под ОК, кг
	ŀ	Коллектор NVC	K1-50-N(-OK)	.П/Л			
410076/410197	410228/410238	K1-50-2		1394		22,2	24,2
410362/410317	410186/410187	K1-50-3	, , 1 , , 0	1894		26,8	29,9
410690/410691	410028/410188	K1-50-4	6.4.1-6.4.2	2394		31,5	35,6
410744/410745	410455/410454	K1-50-5		2894		36,1	41,3
410746/410747	410470/410471	K1-50-6		3394	188	51	57,1
410748/410749	410794/410795	K1-50-7		3894		55,7	62,8
410750/410751	410796/410797	K1-50-8	6.4.3-6.4.4	4394		60,3	68,5
410752/410753	410798/410799	K1-50-9		4894		65	74,2
410754/410755	410800/410801	K1-50-10		5394		69,7	79,9
	ŀ	Коллектор NVC	K1-65-N(-OK)	.п/л			
410079/410191	410143/410283	K1-65-2		1410		30	32,1
410134/410195	410116/410231	K1-65-3		1910		35,7	38,7
410113/410294	410166/410274	K1-65-4	6.4.1-6.4.2	2410	-	41,3	45,4
410824/410825	410446/410885	K1-65-5		2910		46,9	52
410826/410713	410445/410670	K1-65-6		3410	223	67,5	73,7
410827/410828	410879/410880	K1-65-7		3910		73,1	80,3
410829/410830	410328/410175	K1-65-8	6.4.3-6.4.4	4410		78,8	87
410831/410832	410881/410882	K1-65-9		4910	-	84,4	93,6
410833/410834	410883/410884	K1-65-10		5410		90	100,3
	ŀ	Коллектор NVC	K1-80-N(-OK)	.П/Л			
410125/410216	410119/410693	K1-80-2		1410		38,7	40,6
410131/410214	410394/410033	K1-80-3		1910		46,7	49,7
410257/410260	410395/410396	K1-80-4	6.4.1-6.4.2	2410		54,7	58,7
410082/410199	410224/410223	K1-80-5		2910		62,8	67,7
410152/410222	410225/410230	K1-80-6		3410	225	87,4	93,3
410430/410429	410438/410437	K1-80-7		3920		95,4	102,4
410432/410431	410440/410439	K1-80-8	6.4.3-6.4.4	4420		103,4	111,4
410434/410433	410442/410441	K1-80-9		4920		111,5	120,4
410436/410435	410165/410271	K1-80-10		5420		119,5	129,5
	k	оллектор NVC	K1-100-N(-OK).П/Л			
410241/410244	410397/410398	K1-100-2		1420		52,8	54,9
410254/410272	410038/410263	K1-100-3	, , 1 , , 0	1920		62,3	65,4
410219/410218	410213/410212	K1-100-4	6.4.1-6.4.2	2420		71,8	76
410157/410217	410319/410318	K1-100-5		2920		81,3	86,5
410307/410269	410399/410400	K1-100-6		3420	262	116,8	123,1
410015/410330	410184/410185	K1-100-7		3920		126,3	133,6
410293/410379	410364/410363	K1-100-8	6.4.3-6.4.4	4420	1	135,8	144,1
410232/410373	410044/410169	K1-100-9]	4920	1	145,3	154,6
410018/410233	410160/410215	K1-100-10	1	5420	1	154,3	165,2


Артикул с муфтой под РВД (П/Л)	Артикул с муфтой под ОК (П/Л)	Тип коллектора	Рис.	L, mm	Н тах, мм	Масса с муфтой под РВД, кг	Масса с муфтой под ОК, кг
	K	оллектор NVC	K1-125-N(-OK).П/Л			
41010023/41010022	41010021/41010020	K1-125-2		1456		47,5	49,6
41010031/41010030	41010029/41010028	K1-125-3	6.4.1-6.4.2	1956		60,3	63,5
41010035/41010034	41010033/41010032	K1-125-4		2456		73,2	77,4
41010037/41010036	410463/410464	K1-125-5		2956		86	91,2
41010041/41010040	41010039/41010038	K1-125-6	.,,,,,,	3456	???	108,5	114,9
41010045/41010044	41010043/41010042	K1-125-7	6.4.3-6.4.4	3956		121,4	128,8
41010049/41010048	41010047/41010046	K1-125-8		4456		134,2	142,6
41010053/41010052	41010051/41010050	K1-125-9		4956		147	156,5
410979/410978	410977/410975	K1-125-10	6.4.5-6.4.6	5456		159,8	170,4
	K	оллектор NVC	K1-150-N(-OK).П/Л			
410937/410938	410913/410469	K1-150-2		1486		108,4	110,6
410380/410378	410401/410402	K1-150-3	6.4.1-6.4.2	1986		125,3	128,5
410356/410377	410403/410404	K1-150-4		2486		142	146,4
410221/410211	410405/410406	K1-150-5		2986		214,6	220
410376/410210	410407/410408	K1-150-6		3486	340	231,5	237,9
410220/410209	410409/410410	K1-150-7	6.4.3-6.4.4	3986		248,3	255,8
410311/410312	410313/410314	K1-150-8		4486	1	265,1	273,7
410331/410381	410411/410412	K1-150-9	6.4.5-6.4.6	4986		337,7	347,4
410357/410358	410413/410414	K1-150-10	0.4.3-0.4.6	5486		354,6	365,3

6.5 Клапан предохранительный

6.5.1 Муфта К 3/4"

Муфта К 3/4" предназначена для установки на трубопроводе клапана предохранительного 60 бар АРЕ6.

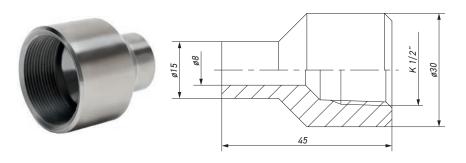


Артикул Наименование при заказе		Масса, кг
212090	Муфта К 3/4″	0,14

6.5.2 Клапан предохранительный КПРМ

Клапан предохранительный с разрывной мембранной предназначен для защиты от механического повреждения технологического оборудования установки газового пожаротушения и трубопровода (коллектора) избыточным давлением.

Сброс давления рабочей среды сверх установленного предела производится путем разрыва предохранительной мембраны. Устанавливается в муфту К 1/2".

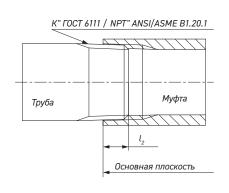

МАТЕРИАЛ ИЗГОТОВЛЕНИЯ Латунь ЛС59 ГОСТ 2060 или нержавеющая сталь

- 1 Мембрана
- 2 Штуцер
- 3 Прижим МПУ
- 4 Пломба

Артикул	Наименование при заказе	Рабочее давление, МПа	Давление разрыва мембраны, МПа (±10%)	Температура эксплуатации, °С	Масса, кг
414382	Клапан предохранительный КПРМ-5,0-6,2-ЛС	5,0	6,2		
414383	Клапан предохранительный КПРМ-6,5-8,2-ЛС	6,5	8,2		
414386	Клапан предохранительный КПРМ-5,0-6,2-НС	5,0	6,2	от минус 40 до 60	0,2
414387	Клапан предохранительный КПРМ-6,5-8,2-НС	6,5	8,2		

6.5.3 Муфта К 1/2"

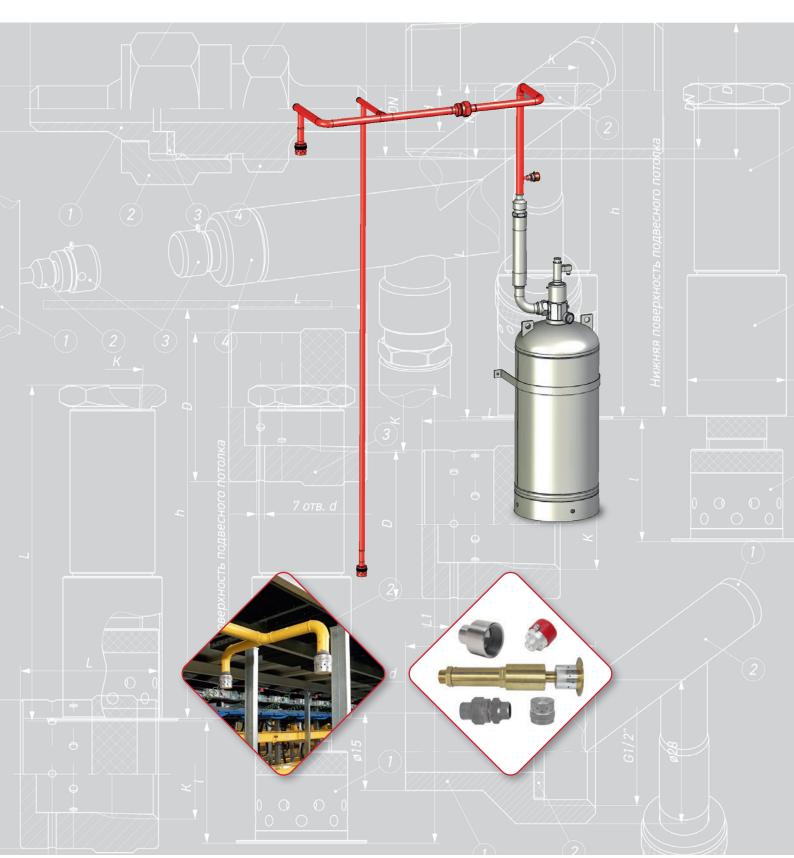
Муфта К 1/2" предназначена для установки на трубопроводе предохранительного клапана КПРМ.



Артикул	Наименование при заказе	Масса, кг
212106	Муфта К 1/2"	0,12

6.6 Длина свинчивания конической дюймовой резьбы

Для расчета величин установочных размеров оборудования с конической дюймовой резьбой приведена таблица длин свинчивания деталей по основной плоскости.



Обозначение размера резьбы К / NPT, дюймы	Длина резьбы от торца трубы до основной плоскости l ₂ , мм
3/8	6,096
1/2	8,128
3/4	8,611
1	10,160
1 1/4	10 / / 0
1 1/2	10,668
2	11,074
2 1/2 NPT	17,323

7

ОБОРУДОВАНИЕ РАСПРЕДЕЛИТЕЛЬНОГО ТРУБОПРОВОДА

7.1 Насадок

Насадок предназначен для выпуска и равномерного распределения газового огнетушащего вещества в защищаемом объеме.

7.1.1 Насадок NVC

Насадок разработан специально для работы с ГОТВ Novec 1230 (ФК 5-1-12). За счет своей геометрии насадок NVC имеет большой радиус действия, что позволяет спроектировать наиболее рациональную и компактную конфигурацию распределительного трубопровода.

Насадки изготавливаются под заказ по результатам гидравлического расчета или согласно проектной документации.

Обозначение при заказе:

Насадок **NVC DN X1(X2) -X3-n-d, X4,** где:

NVC - наименование изделия, принятое изготовителем

Х1 - номинальный диаметр насадка, мм: 15, 20, 25, 32, 40, 50

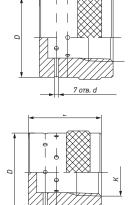
X2 - присоединительная коническая резьба, дюймы: 1/2", 3/4", 1", 1 1/4", 1 1/2", 2"

X3 - угол распыла насадка, градусы: 180°, 360°

Х4 - материал изготовления: алюминий

n – количество отверстий, шт;

d - диаметр отверстия насадка, мм


Параметры насадков определяются гидравлическим расчетом.

Примеры обозначения насадков:

- Насадок NVC DN15 (1/2") 180°-n-d, алюминий
- Насадок NVC DN15 (1/2") 360°-n-d, алюминий

МАТЕРИАЛ ИЗГОТОВЛЕНИЯ

Алюминий

R 6,9 M

Распределение ГОТВ на 360° Количество отверстий – 16 шт.

Артикул	Тип насадка	DN	D, мм	L, мм	К, дюймы	Масса, кг
402038	NVC DN15 (1/2")	15	44,4	41,0	1/2	0,15
402040	NVC DN20 (3/4")	20	49,9	47,0	3/4	0,21
402042	NVC DN25 (1")	25	56,2	52,0	1	0,26
402044	NVC DN32 (1 1/4")	32	64,4	62,0	1 1/4	0,38
402046	NVC DN40 (1 1/2")	40	70,4	68,0	1 1/2	0,47
402048	NVC DN50 (2")	50	83,0	89,0	2	0,83

7.1.2 Насадок скрытый выдвижной NVC-S2

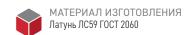
Является модифицированной версией насадка NVC и предназначен для скрытой установки. Применяется для сохранения эстетического вида таких объектов как картинные галереи, музеи, выставочные комплексы и т.д. Устанавливаются за подвесным потолком и выдвигаются в пространство помещения за счет давления, возникающего в трубопроводе после активации модулей пожаротушения. Радиус действия насадков аналогичный насадкам NVC.

Обозначение при заказе:

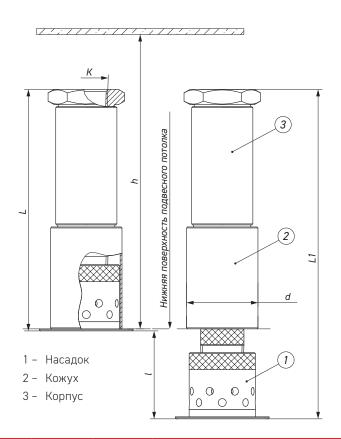
Насадок скрытый выдвижной **NVC-S2 DNX1 (X2)** параметры [n; d], где:

NVC-S2 - наименование изделия, принятое изготовителем;

X1 - номинальный диаметр насадка: 15, 20, 25, 32, 40, 50;

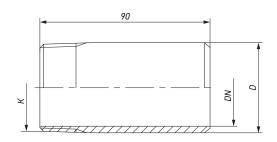

Х2 – распределение ГОТВ, градусы: 360 или 180;

параметры [n; d]:


n - количество отверстий, шт;

d – диаметр отверстия насадка, мм

определяются гидравлическим расчетом.



				Размеры			Минимальная высота подвес- ного потолка необходимая	
Артикул	Тип насадка	d, MM	L, mm	L1,	l, MM	К, дюймы	для установки насадков, h, мм	Масса, кг
213040	NVC-S2-DN15	50	188	250	63	1/2	360	1,43
213041	NVC-S2-DN20	55	201	270	69	3/4	370	1,67
213042	NVC-S2-DN25	62	215	290	75	1	390	2,32
213043	NVC-S2-DN32	70	237	323	86	1 1/4	410	3,33
213044	NVC-S2-DN40	76	257	348	91	1 1/2	343	4,15
213045	NVC-S2-DN50	89	336	485	150	2	530	6,42

Ниппель под насадок

Предназначен для установки на распределительном трубопроводе насадка типа NVC и NVC-S2.

			Massa		
Артикул	Наименование при заказе	DN	К, дюймы	D, мм	Масса, кг
214023	Ниппель под насадок DN15	15	1/2	21	0,11
214024	Ниппель под насадок DN20	20	3/4	28	0,21
214025	Ниппель под насадок DN25	25	1	34	0,29
214026	Ниппель под насадок DN32	32	1 1/4	43	0,44
214027	Ниппель под насадок DN40	40	1 1/2	49	0,54
214028	Ниппель под насадок DN50	50	2	61	0,77

Сигнализатор давления универсальный СДУ-М

Сигнализатор давления универсальный СДУ-М ТУ 4371-016-00226827-98 - сигнальное устройство, реагирующее на изменение давления рабочей среды относительно окружающей воздушной среды: замыкание/размыканием контактной группы. Устанавливается на участке трубопровода посредством муфты СДУ-ПК G 1/2" или в торцевую заглушку коллектора NVC и предназначен для выдачи сигнала о подаче ГОТВ в трубопровод.

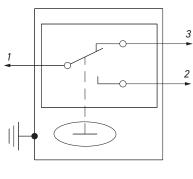


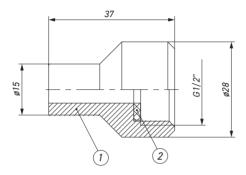
Схема электрическая принципиальная

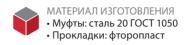
Маркировка выводов

1 - красный

2 - черный (синий)

3 - белый


Артикул	Наименование	Присоедини-	Температура	Степень	Срок службы,	Масса,
	при заказе	тельная резьба	эксплуатации, °C	защиты IP	не менее, лет	кг
417005	Сигнализатор давления универсальный СД 0,02/15(1) G1/2-B.02 – «СДУ-М» исп. 03	G 1/2"	от минус 50 до 55	33	105	0,1



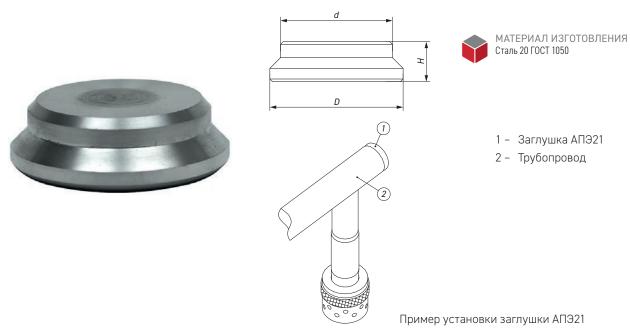
7.2.1 Муфта СДУ-ПК G 1/2″

Предназначена для установки сигнализатора давления универсального СДУ-М на трубопроводе установки газового пожаротушения.

- 1 Муфта СДУ-ПК G 1/2"
- 2 Прокладка уплотнительная

Артикул	Наименование при заказе	Масса, кг
212146	Муфта СДУ-ПК G 1/2″ в сборе (Исп-07 (универсальная))	0,1

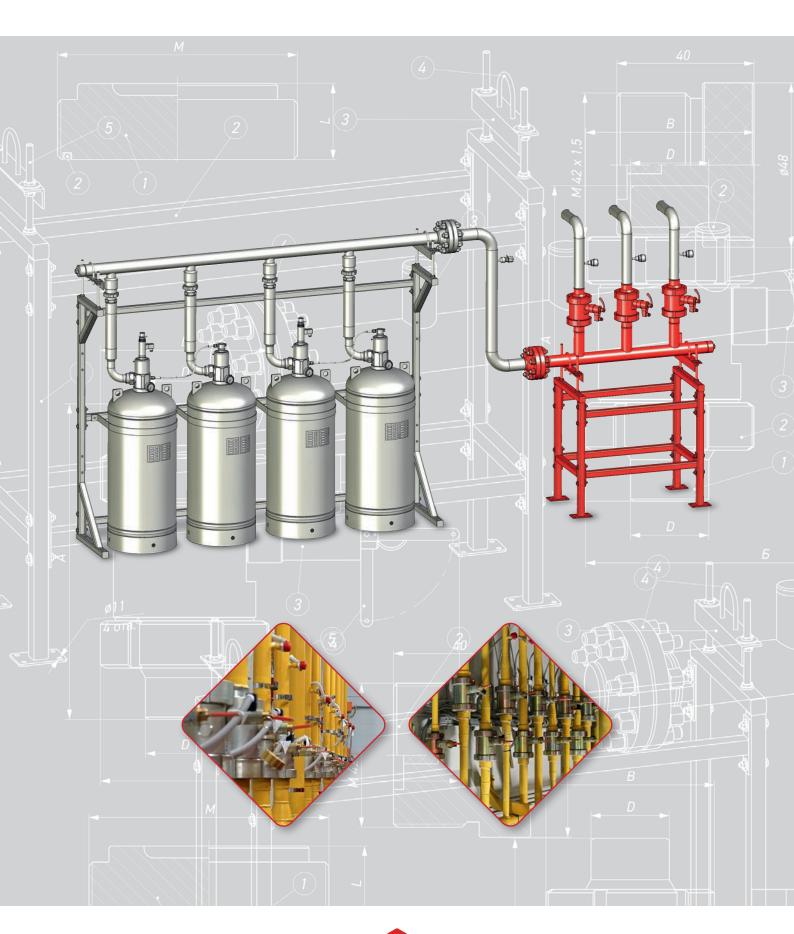
7.3 Штуцерно-торцевое соединение ШТС


Штуцерно-торцевое соединение предназначено для упрощения монтажа трубопровода, в тех случаях, когда на объекте не допускается проводить сварочные работы.

		Размеры						
Артикул	Наименование при заказе	DN	М, мм	d, мм	L, мм	Ѕ, мм	\$1, мм	Масса, кг
222051	Штуцерно-торцевое соединение ШТС22	16	36x2	22	105	46	41	0,57
222053	Штуцерно-торцевое соединение ШТС28	20	42x2	28	114	55	46	0,72
222055	Штуцерно-торцевое соединение ШТС32	25	48x2	32	121	60	50	0,97
222057	Штуцерно-торцевое соединение ШТС38	32	56x2	38	128	70	60	1,4
222059	Штуцерно-торцевое соединение ШТС48	41	64x2	48	149	75	65	2,4
222044	Штуцерно-торцевое соединение ШТС57	50	68x2	57	159	80	70	2,5

7.4 Заглушка АПЭ 21

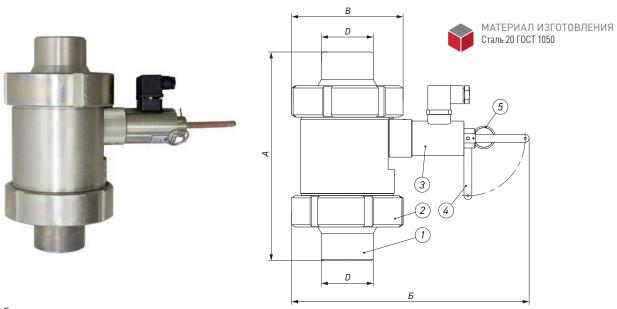
Заглушка предназначена для установки на тупиковых ответвлениях трубопровода.


	Hamasaaaaa	Наружный		Maarr		
Артикул	Наименование при заказе	диаметр трубы, мм	D, мм	d, мм	Н, мм	Масса, кг
	Для	установки на трубопровс	де			
211011	Заглушка 22х15 АПЭ21	22x3,0	22	15	15	0,03
211013	Заглушка 25х19 АПЭ21	25x2,5	25	19	15	0,05
211014	Заглушка 28х19 АПЭ21	28x4,0	28	19	15	0,05
211017	Заглушка 32х24 АПЭ21	32x3,5	32	24	15	0,07
211019	Заглушка 38х31 АПЭ21	38x3,0	38	31	15	0,11
211024	Заглушка 48х40 АПЭ21	48x3,5	48	40	15	0,18
211022	Заглушка 48х36 АПЭ21	48x5,5	48	36	16	0,17
211028	Заглушка 57х49 АПЭ21	57x3,5	57	49	15	0,26
211033	Заглушка 73х64 АПЭ21	73x4,0	73	64	15	0,43
211038	Заглушка 89х79 АПЭ21	89x4,5	89	79	15	0,64
211003	Заглушка 108х99 АПЭ21	108x4,0	108	99	20	1,30
211005	Заглушка 133х123 АПЭ21	133x4,5	133	123	20	2,0
211007	Заглушка 159х147 АПЭ21	159×5,5	159	147	22	3,11
	Для ус	тановки на коллекторе №	IVC ¹			
211026	Заглушка 57х47 АПЭ21	57x4,5 (K1-50)	57	47	15	0,24
211031	Заглушка 73х63 АПЭ21	73x4,5 (K1-65)	73	63	15	0,42
211040	Заглушка 90х76 АПЭ21	90x6,5 (K1-80)	90	76	18	0,75
211001	Заглушка 108х94 АПЭ21	108x6,5 (K1-100)	108	94	22	1,33
211009	Заглушка 160х142 АПЭ21	160x8,5 (K1-150)	160	142	25	3,43

 $^{^{1}}$ Применяются в случае сварки коллектора на объекте.

8

РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА



Распределительное устройство РУП

Распределительное устройство используется в составе централизованной установки газового пожаротушения и предназначено для пропуска газового огнетушащего вещества (ГОТВ) по направлениям в один из нескольких защищаемых объектов. Для подачи ГОТВ по двум и более направлениям на трубопроводе устанавливается соответствующее количество устройств.

Работоспособность устройства сохраняется независимо от положения в пространстве, при соблюдении направления подачи ГОТВ в соответствии со стрелкой, нанесенной на корпус. Активация РУП осуществляется от пускового импульса, передаваемого на электромагнитный привод, или механического воздействия на рукоятку ручного пуска. Электромагнитный привод, совмещенный с устройством ручного пуска, входит в комплект поставки РУП.

РУП не имеет разрушаемых элементов в своей конструкции, что позволяет снизить затраты при эксплуатации и сократить время на восстановление работоспособности централизованной АУГПТ.

Обозначение при заказе:

(2)(3) (4)

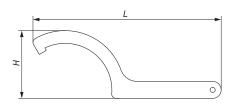
РУП - XXX - 150 - ПМСА.491114.001 ТУ

где 1 – наименование устройства, принятое изготовителем (РУП);

- 2 диаметр условного прохода, мм;
- 3 рабочее давление, 150 кгс/см2;
- 4 обозначение технических условий, в соответствии с которыми изготовлено устройство.

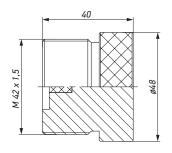
- 1 Патрубок присоединительный
- 2 Гайка накидная
- 3 Электромагнитный привод
- 4 Рукоятка ручного пуска
- 5 Чека

		Размеры, мм			
Артикул	Наименование при заказе	А	Б	В	Масса, кг
406081	Распределительное устройство РУП-25-150	230	275	a110	/ =
406082	Распределительное устройство РУП-32-150	230	2/5	ø110	6,5
406083	Распределительное устройство РУП-50-150	265	305	ø142	13,5
406084	Распределительное устройство РУП-65-150	282	301	ø152	16,8
406085	Распределительное устройство РУП-80-150	305	350	ø190	30,0
406086	Распределительное устройство РУП-100-150	336	350	ø220	44,5
406092	Распределительное устройство РУП-150-100	484	500	ø295	97,5


Наименование параметра	PYII-25-150	PYII-32-150	PYП-50-150	PYП-65-150	PYII-80-150	PVП-100-150	PVП-150-100
Диаметр условного прохода, мм	25	32	50	65	80	100	150
Рабочее (максимально допустимое) давление, МПа (кгс/см²)	14,7 (150)		9,8 (100)				
Минимальное давление на входе, не менее, МПа (кгс/см 2)		0,29	(3,0)			0,49 (5,0)	
Параметры - напряжение постоянного тока, В пускового импульса - сила тока, не более, А - длительность импульса, не менее, с - ток контроля цепи электромагнита, не более, А	24 ± 2,4 0,5 1,0 0,05						
Эквивалентная длина, м, не более	2,1	2,7	4,8	5,0	5,3	6	8
Наружный диаметр (D) и толщина стенки входного и выходного патрубков, мм	35x5	42x5	66x8	81x8	96x8	120X10	168x9
Расстояние между устройствами, не менее, мм		200	220	250	290	320	395
Расстояние от оси устройства до стены, не менее, мм		100	110	130	145	160	200
Срок службы, не менее, лет		30					
Степень защиты IP по ГОСТ 14254		IP66					

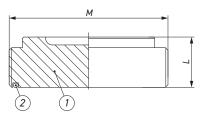
8.1.1 Дополнительное оборудование для РУП

Ключ монтажный КМ-25...150 предназначен для затяжки накидных гаек распределительного устройства РУП в присоединительные патрубки.



		Разме	.,	
Артикул	Наименование при заказе	L	Н	Масса, кг
406071	Ключ монтажный КМ-25/32 для гаек РУП	228	79	0,35
406072	Ключ монтажный КМ-50 для гаек РУП	284	96	0,45
406077	Ключ монтажный КМ-65 для гаек РУП	293	101	045
406073	Ключ монтажный КМ-80 для гаек РУП	377	128	0,9
406074	Ключ монтажный КМ-100 для гаек РУП	399	143	1,0
406118	Ключ монтажный КМ-150 для гаек РУП	390	150	2,0

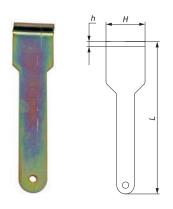
Ключ для взвода привода предназначен для приведения в рабочее положение распределительного устройства путем взвода электромагнитного привода в исходное состояние «Взведен».



Артикул	Наименование при заказе	Масса, кг
406090	Ключ для взвода при- вода ПМСА.296371	0,5

Заглушка технологическая испытательная ЗРУП предназначена для установки в накидные гайки вместо распределительного устройства РУП для герметизации трубопровода при проведении гидравлических и пневматических испытаний. На одно распределительное устройство необходимо две заглушки ЗРУП.

Установка заглушек осуществляется с помощью ключа КМ-1 или КМ-2.



- 1 Заглушка
- 2 Кольцо уплотнительное

	МАТЕРИАЛ ИЗГОТОВЛЕНИЯ Сталь10 ГОСТ 1050
--	--

		Размеры, мм		Massa
Артикул	Наименование при заказе	М	L	Масса, 1 шт, кг
211389	Заглушка технологическая испытательная ЗРУП-25/32	90	32	1,5
211390	Заглушка технологическая испытательная ЗРУП-50	120	38	3,0
211391	Заглушка технологическая испытательная ЗРУП-65	130	38	3,6
211392	Заглушка технологическая испытательная ЗРУП-80	160	35	5,0
211387	Заглушка технологическая испытательная ЗРУП-100	200	47	11,0
211388	Заглушка технологическая испытательная ЗРУП-150	270	50	19,8

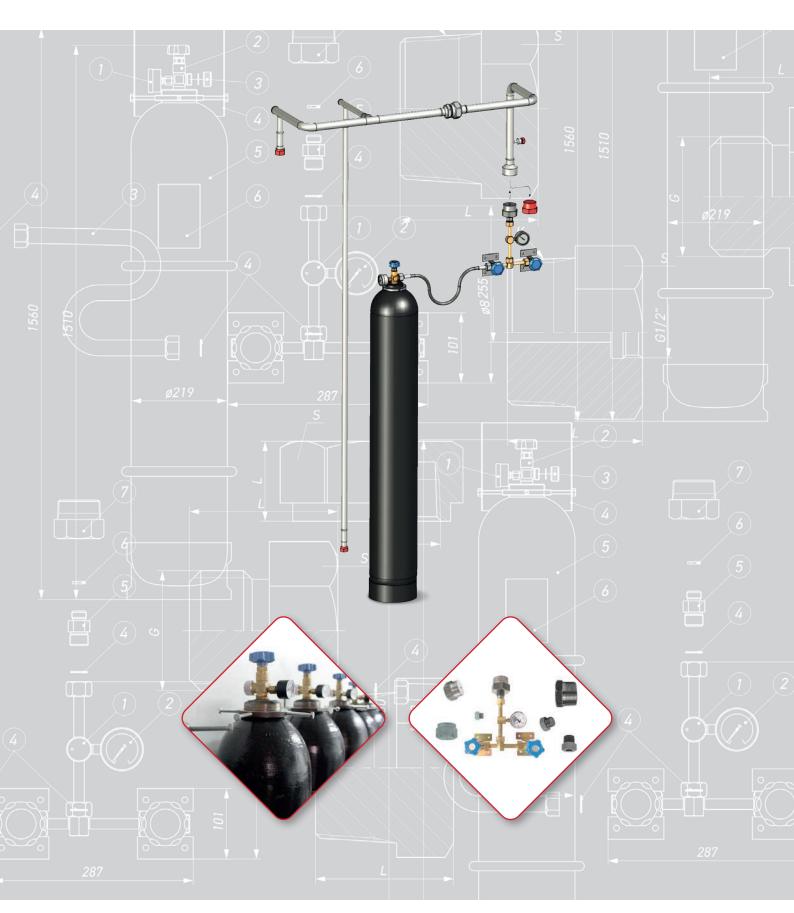
Ключ монтажный типа КМ-1 или КМ-2 предназначен для установки заглушек технологических испытательных ЗРУП.

		Размеры, мм			
Артикул	Наименование при заказе	L	Н	h	Масса, кг
406075	Ключ монтажный КМ-1 для заглушек ДУ25/32/50/65	255	60	6	0,6
406076	Ключ монтажный КМ-2 для заглушек ДУ80/100/150	355	90	6	1,0

Допускается использовать ключ монтажный КМ-1 при монтаже заглушек ДУ 80/100/150

8.2 Коллектор РУ

Коллектор РУ предназначен для установки нескольких распределительных устройств и подключения их к трубопроводу посредством фланцевого соединения. Изделие изготавливается под заказ с индивидуальными параметрами по результатам гидравлического расчета с учетом геометрии помещения станции и может применяться только для централизованных установок газового пожаротушения. Рабочее давление коллектора – 6,4 МПа.


8.3 Рама коллектора РУ

Рама коллектора РУ предназначена для крепления коллектора РУ и его регулировки по высоте за счет перемещения уголка по направляющим шпилькам. Изделие изготавливается под заказ с индивидуальными параметрами и может применяться только для централизованных установок газового пожаротушения. Поставляется в разобранном виде.

9

ОБОРУДОВАНИЕ ДЛЯ ПРОВЕДЕНИЯ ИСПЫТАНИЙ

9.1 Баллон испытательный переносной БИП-40-150

Баллон испытательный переносной БИП-40-150 используется в качестве сосуда для хранения азота (N2) ГОСТ 9293 и предназначен для продувки трубопроводов установок пожаротушения, испытания их на прочность и герметичность в соответствии с n.9.10 ГОСТ 50969. В части воздействия климатических факторов внешней среды – по группе условий хранения и транспортирования 3 (Ж3) ГОСТ 15150, но для температуры от минус 40 до 50 °C.

МАТЕРИАЛ ИЗГОТОВЛЕНИЯ

- Баллон: сталь углеродистая или легированная
- Вентиль: латунь
- Кожух защитный: сталь углеродистая
- 1 Манометр
- 2 Вентиль запорный
- 3 Заглушка транспортная (G3/4")
- 4 Кожух защитный
- 5 Баллон 40-150У ГОСТ 949
- 6 Этикетка

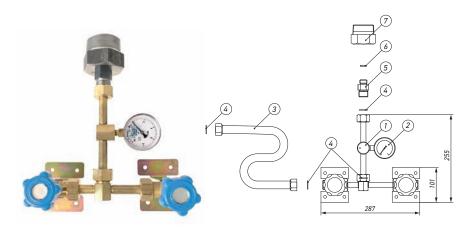
Необходимое количество БИП-40-150 для проведения испытаний трубопроводов определяется по формулам:

$$N_{\text{бил}} = \log_k \frac{P_{\text{бил}}}{P_{\text{бил}} - P_{\text{мсл}}}$$
, где $k = \frac{V_{\text{бил}} + V_{\text{тр}}}{V_{\text{тр}}}$

N_{бил} - необходимое количество БИП-40-150, для испытания трубопровода (шт);

 $V_{_{TD}}$ – объем испытываемого трубопровода (л);

V_{бил} – объем баллона БИП-40-150 (40л)

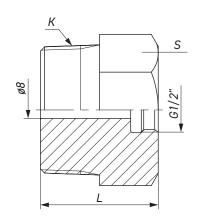

 $P_{\text{бип}}$ – давление в баллоне БИП-40-150 при 20°С (136,1 кгс/см 2 / 13,4 МПа / 133,5 бар)

Артикул	Наименование при заказе	Вместимость баллона, л	Рабочее давление кгс/см²	Давление в баллоне при 20°С, кгс/см²	Номинальный объем заправ- ленного газа, м ³	Масса пустого изделия, кг
555002	Баллон испытательный переносной БИП-40-150	40	150	136,1	5,4	70

9.2 Устройство для опрессовки трубопровода УОП-10

Устройство для опрессовки трубопровода УОП-10 предназначено для продувки и пневматических испытаний трубопроводов установок пожаротушения в соответствии с п.9.10 ГОСТ Р 50969. В качестве источника испытательного газа рекомендуется использовать баллон испытательный переносной БИП-40-150. Переходник для УОП G1/2" – K2" и рукав высокого давления РВД DN12 2SN входят в комплект поставки.

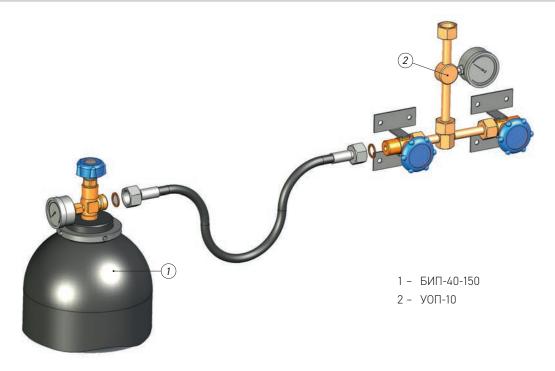
МАТЕРИАЛ ИЗГОТОВЛЕНИЯ

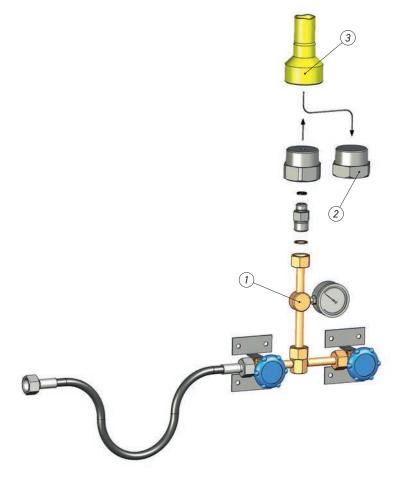

- Корпус: латунь
- Переходники: сталь 20 ГОСТ 1050
- РВД: шланг высокого давления резина DIN EN 853 2SN
- 1 Корпус УОП-10 (G 3/4")
- 2 Манометр (М12х1,5)
- 3 Рукав высокого давления PBД DN12 2SN L=2м (G 3/4")
- 4 Шайба медная
- 5 Переходник G 3/4" G 1/2"
- 6 Прокладка фторопластовая
- 7 Переходник для УОП G1/2" K2"


Артикул	Наименование	Рабочее	Температура	Масса,
	при заказе	давление, МПа	эксплуатации, °C	кг
411016	Устройство для опрессовки трубопровода УОП-10	10,0	от минус 10 до 50	5,5

9.2.1 Переходник для УОП

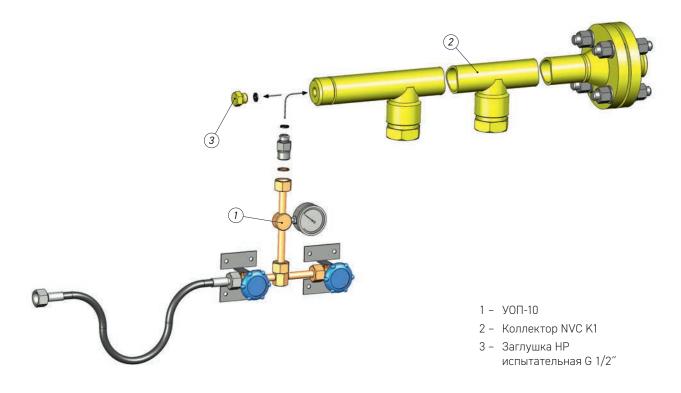
Переходник для УОП предназначен для подключения устройства опрессовки УОП-10 к трубопроводу, устанавливается в муфту под РВД или муфту переходную под РВД при проведении пневматических испытаний трубопроводов.

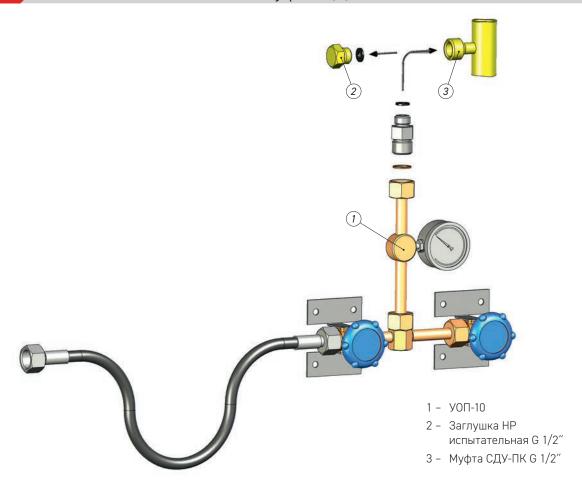



			Размеры			
Артикул	Наименование при заказе	DN муфты	К, дюймы	L, MM	S, MM	Масса, кг
217016	Переходник для УОП G1/2" - K1"	25	1	45	36	0,3
217018	Переходник для УОП G1/2" – K2"	50	2	55	65	1,30

9.3 Схемы подключения оборудования для проведения испытаний

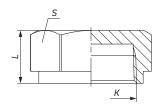
9.3.1 Подключение УОП-10 к БИП-40-150

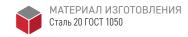

9.3.2 Подключение УОП-10 к Муфте РВД


- 1 УОП-10
- 2 Заглушка НР испытательная
- 3 Муфта под РВД

9.3.3 Подключение УОП-10 к Коллектору NVC K1

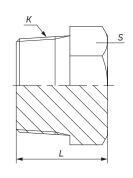
9.3.4 Подключение УОП-10 к Муфте СДУ-ПК


Заглушка испытательная


Заглушка ВР испытательная

Заглушка ВР испытательная предназначена для установки на ниппель под насадок для герметизации трубопровода при проведении гидравлических или пневматических испытаний.

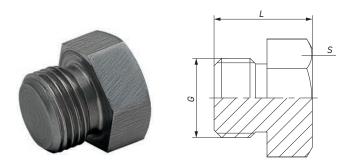
В установках без рукава высокого давления с использованием муфты-переходника также применяются заглушки ВР испытательные с резьбой К1" или К2" соответствующие ниппелю муфты-переходника.



			Размеры			
Артикул	Наименование при заказе	DN ниппеля	К, дюймы	L, MM	S, MM	Масса, кг
211060	Заглушка ВР испытательная К 1/2"	15	1/2	22	27	0,21
211064	Заглушка ВР испытательная К 3/4"	20	3/4	23	34	0,28
211058	Заглушка ВР испытательная К 1"	25	1	29	41	0,36
211056	Заглушка ВР испытательная К 1 1/4"	32	1 1/4	30	50	0,62
211054	Заглушка ВР испытательная К 1 1/2"	40	1 1/2	31	60	0,75
211062	Заглушка ВР испытательная К 2"	50	2	35	70	0,98

Заглушка НР испытательная К

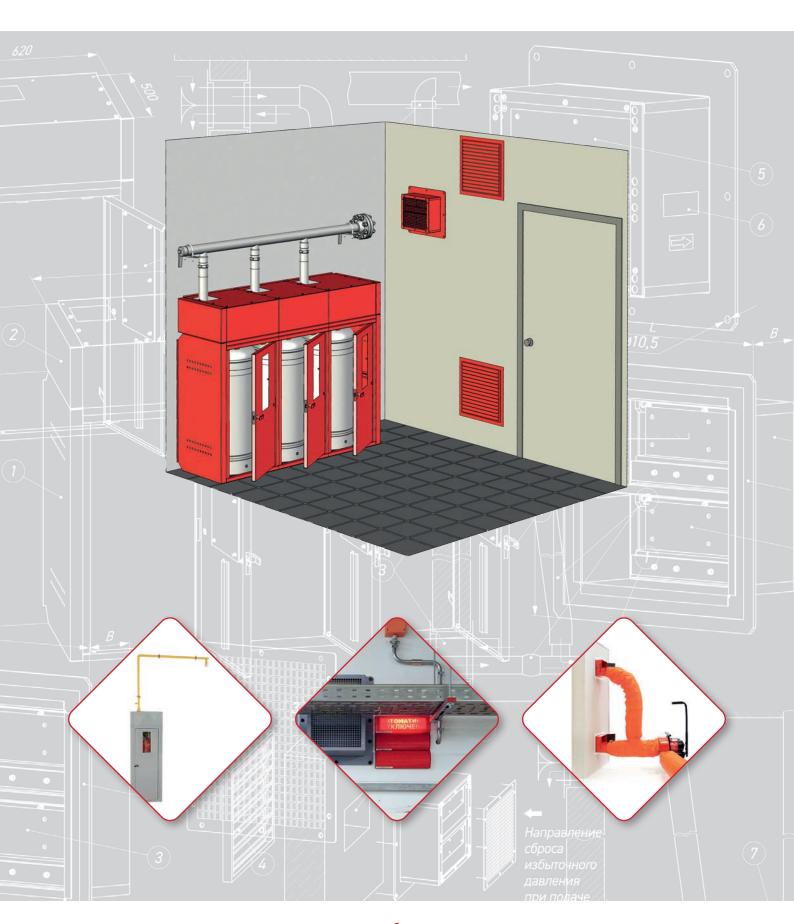
Заглушка НР испытательная предназначена для установки в муфты под РВД, клапан обратный, для герметизации трубопровода при проведении гидравлических или пневматических испытаний.



			Размеры			
Артикул	Наименование при заказе	DN муфты	К, дюймы	L, MM	S, MM	Масса, кг
211141	Заглушка НР испытательная К 3/4"	20	3/4	32	30	0,16
211085	Заглушка НР испытательная К 1″	25	1	45	36	0,46
211077	Заглушка НР испытательная К 2″	50	2	50	65	1,24
211079	Заглушка HP испытательная NPT21/2"	65	21/2 NPT	60	75	1,87

9.4.3 Заглушка НР испытательная G

Заглушка НР испытательная предназначена для установки в муфту СДУ для герметизации трубопровода при проведении гидравлических или пневматических испытаний.



			Размеры			
Артикул	Наименование при заказе	DN муфты	G, дюймы	L, MM	S, MM	Масса, кг
211075	Заглушка HP испытательная G 1/2"	15	1/2	26	27	0,10

10

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

10.1 Шкаф модулей ШКМ

При необходимости модули газового пожаротушения могут быть установлены в декоративный шкаф. Установка модулей внутри шкафа позволяет избежать несанкционированного доступа и механических повреждений во время эксплуатации. Наличие смотрового окна в дверце шкафа позволяет контролировать показания манометра без открытия самой дверцы.

Шкаф поставляется единой позицией на 1 модуль и на группу от 2 до 10 модулей. Изготавливаются 3 стандартных типа шкафа с возможностью установки дополнительной антресоли, что позволяет подобрать необходимую конфигурацию для модулей объемом от 52 до 180 л.

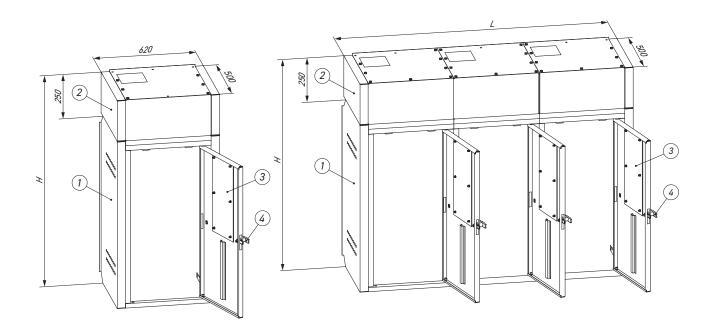
Обозначение при заказе:

Шкаф модуля ШКМ Х1-Х2/Х3-Х4, где:

ШКМ – наименование, принятое изготовителем;

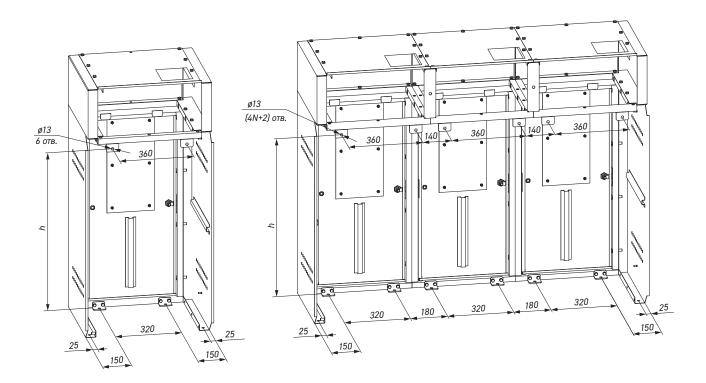
Х1 – тип шкафа (1, 2, 3);

Х2 - условная высота шкафа без учета антресоли, мм (1000, 1500, 2000);


ХЗ – наличие антресоли в составе шкафа:

- 0 без антресоли;
- 250 с антресолью (для увеличения высоты шкафа);

X4 - количество модулей для размещения внутри шкафа, N, шт. (от 1 до 10).



- 1 Шкаф
- 2 Антресоль шкафа
- 3 Смотровое окно
- 4 Замок

МАТЕРИАЛ ИЗГОТОВЛЕНИЯ

- Сталь О8пс ГОСТ 16523
- Смотровое стекло: стекло органическое ГОСТ10667

Расположение отверстий крепления шкафа к стене и полу

Артикул	Наименование при заказе	Вместимость баллона модуля, л				
			Н, мм	h, мм	L, мм	Масса, кг
554027	ШКМ1-1000/0-1	52	1030	963	620	36,1
554028	ШКМ1-1000/0-2				1120	56,2
554029	ШКМ1-1000/0-3				1620	76,2
554030	ШКМ1-1000/0-4				2120	96,2
554031	ШКМ1-1000/0-5				2620	116,2
554032	ШКМ1-1000/0-6				3120	136,2
554033	ШКМ1-1000/0-7				3620	156,2
554034	ШКМ1-1000/0-8				4120	176,2
554035	ШКМ1-1000/0-9				4620	196,2
554036	ШКМ1-1000/0-10				5120	216,2
554051	ШКМ2-1500/0-1	106		- 1445	620	48,8
554052	ШКМ2-1500/0-2				1120	74,0
554053	ШКМ2-1500/0-3				1620	99,2
554054	ШКМ2-1500/0-4				2120	124,4
554055	ШКМ2-1500/0-5		1510		2620	149,6
554056	ШКМ2-1500/0-6		1510		3120	174,8
554057	ШКМ2-1500/0-7				3620	200,2
554058	ШКМ2-1500/0-8				4120	225,4
554059	ШКМ2-1500/0-9				4620	250,6
554060	ШКМ2-1500/0-10				5120	275,8
554061	ШКМ2-1500/250-1	147	1760		620	56,2
554062	ШКМ2-1500/250-2				1120	84,2
554063	ШКМ2-1500/250-3				1620	112,0
554064	ШКМ2-1500/250-4				2120	140,0
554065	ШКМ2-1500/250-5				2620	167,8
554066	ШКМ2-1500/250-6				3120	195,8
554067	ШКМ2-1500/250-7				3620	223,6
554068	ШКМ2-1500/250-8				4120	251,6
554069	ШКМ2-1500/250-9				4620	279,4
554070	ШКМ2-1500/250-10				5120	307,4
554071	ШКМ3-2000/0-1	- 180		1963	620	61,5
554072	ШКМ3-2000/0-2		2030		1120	92,4
554073	ШКМ3-2000/0-3				1620	123,3
554074	ШКМ3-2000/0-4				2120	154,3
554075	ШКМ3-2000/0-5				2620	185,2
554076	ШКМ3-2000/0-6				3120	216,1
554077	ШКМ3-2000/0-7				3620	247,0
554078	ШКМ3-2000/0-8				4120	278,0
554079	ШКМ3-2000/0-9				4620	309,0
554080	ШКМЗ-2000/0-10				5120	339,8

10.2 Клапан сброса избыточного давления

Клапан сброса избыточного давления (КСИД) предназначен для защиты ограждающих конструкций и оборудования, расположенного внутри помещения, от избыточного давления, создаваемого АУГПТ во время выпуска газового огнетушащего вещества.

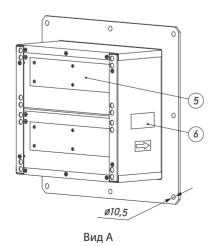
Климатическое исполнение КСИД: УХЛ, категории размещения 2 по ГОСТ 1510, для температуры от минус 55 до 90 $^{\circ}$ C.

Обозначение при заказе:

Клапан сброса избыточного давления КСИД-X1-X2-H, где:

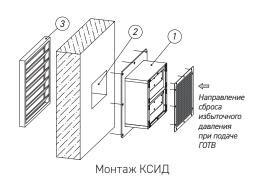
КСИД – наименование, принятое изготовителем;

X1 – площадь проходного сечения (проема) клапана при полном открытии, см²:


Х2 – давление начала открытия створки клапана;

Н – накладной тип крепления.

¹ Компенсация разряжения предусматривается в качестве дополнительного требования от заказчика и не является обязательной согласно требований нормативных документов.



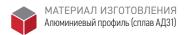
МАТЕРИАЛ ИЗГОТОВЛЕНИЯ

- Корпус: сталь 3 ГОСТ 1050
- Уплотнительстворкистеклотекстолит
- Уплотнитель панели: резина вспененная
- 1 Корпус
- 2 Уплотнитель панели
- 3 Створка
- 4 Решетка
- 5 Уплотнитель створки
- 6 Шильд

- 1 КСИД
- 2 Проем для сброса избыточного давления¹
- 3 Решетка декоративная2
- ¹ Площадь проема определяется при проектировании в соответствии с СП 485.1311500.2020.
- 2 Решетка декоративная не входит в комплект поставки КСИД и заказывается отдельно.

Артикул	Наименование при заказе ¹		Размеры		
		Н, мм	L, мм	В, мм	Масса, кг
551087	КСИД-150-250Па-Н	241	408	138	5,6
551088	КСИД-300-250Па-Н	377			9,8
551089	КСИД-450-250Па-Н	514			13,9
551090	КСИД-600-250Па-Н	650			18,0
551117	КСИД-500-300Па-Н	306	670	208	19,6
551119	КСИД-1000-300Па-Н	508			33,9
551121	КСИД-1500-300Па-Н	710			48,2
551123	КСИД-2000-300Па-Н	914			62,4

¹ Приведены стандартные позиции. Расширенный перечень производимых изделий, а также остальные технические характеристики приведены в Руководстве по эксплуатации на изделие.


10.2.1 Решетка декоративная

Решетка декоративная для КСИД предназначена для закрытия проема сбро-са избыточного давления с внешней стороны защищаемого помещения.

Крепежные элементы подбираются в соответствии с типом ограждающей конструкции, на которой осуществляется установка решетки.

Решетка, крепежные элементы не входят в комплект поставки КСИД и заказываются отдельно.

Артикул	Наименование при заказе	Ширина, мм	Высота, мм
551240	Решетка декоративная для КСИД 150	408	240
551242	Решетка декоративная для КСИД 300/150Д	408	376
551244	Решетка декоративная для КСИД 450/300Д	408	513
551241	Решетка декоративная для КСИД 500	670	306
551245	Решетка декоративная для КСИД 600/450Д	408	650
551243	Решетка декоративная для КСИД 1000/500Д	670	508
551246	Решетка декоративная для КСИД 1500/1000Д	670	710
551247	Решетка декоративная для КСИД 2000/1500Д	670	914

Схема разметки отверстий для крепления КСИД

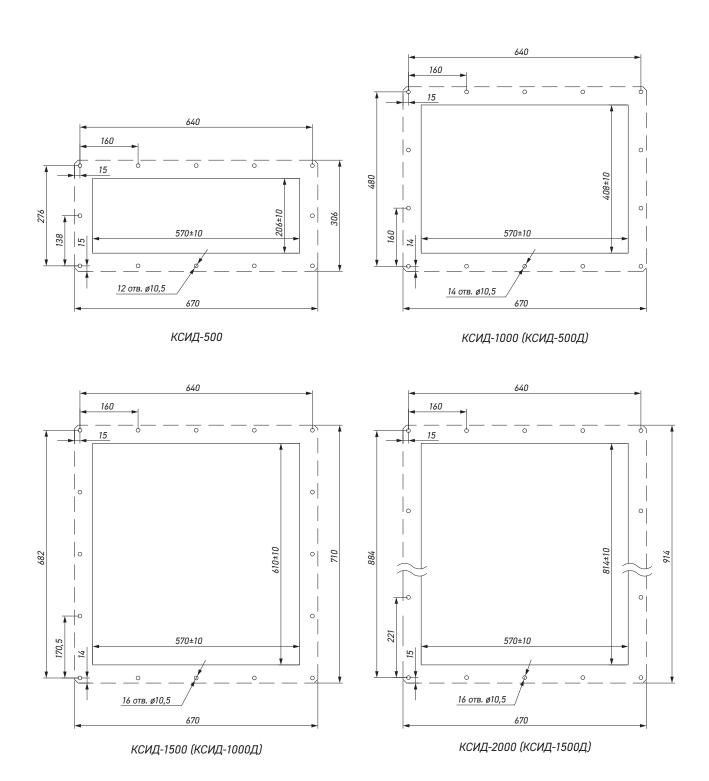


Схема разметки отверстий для крепления КСИД-150

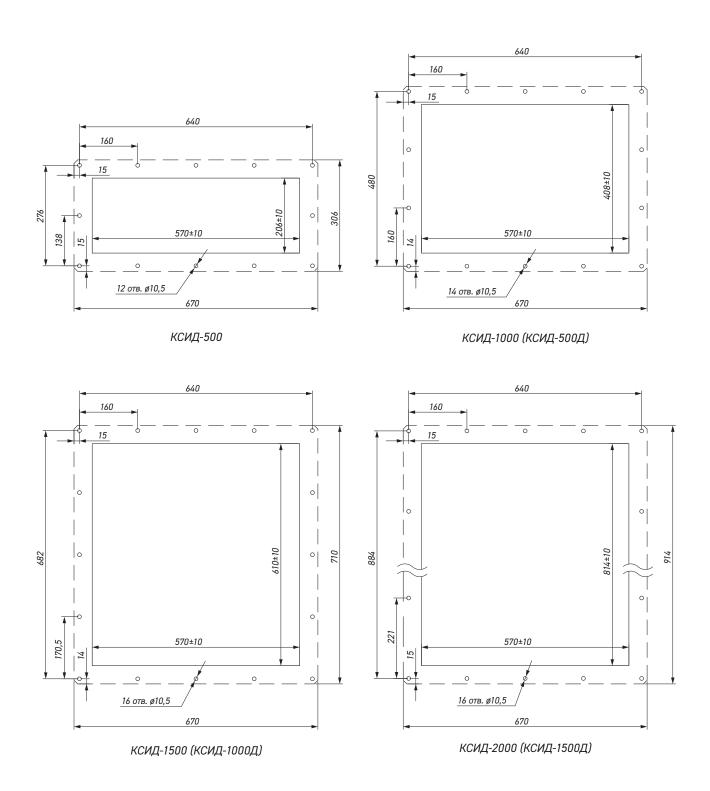
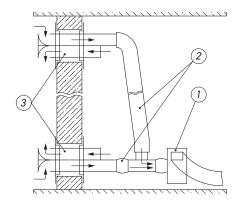
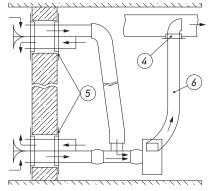


Схема разметки отверстий для крепления КСИД-500

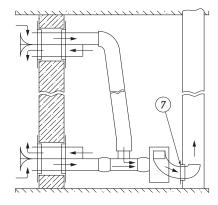
10.3 Оборудование газодымоудаления

Для удаления продуктов горения, ГОТВ и продуктов его термического распада после работы установки АУГПТ допускается применение передвижных вентиляционных установок с механическим побуждением. Передвижная установка газодымоудаления обеспечивает удаление воздуха из верхней и нижней зон помещения при четырехкратном воздухообмене с компенсацией удаляемого объема приточным воздухом.


Удаление наружу



Удаление через вытяжную вентиляцию



Удаление через шахту дымоудаления

Типовые схемы газодымоудаления

- 1 Дымосос ДПЭ-7(*ЦМ)
- 2 Рукав соединительный 1
- 3 Воздуховод специальный
- 4 Узел стыковочный УС-1вв
- 5 Узел стыковочный УС-1вп
- 6 Рукав напорный1
- 7 Узел стыковочный УС-1ду

¹ Входит в комплект поставки дымососа

Дымосос серии ДПЭ-7(*ЦМ)

Дымосос серии ДПЭ-7(*ОТМ)

Наименование дымососа	Производительность, м³/час	Рекомендуемый объем помещения, м³	Макс. длина ¹ напорной линии, м	Масса, кг
ДПЭ-7(1ЦМ)	1500	500	40	14
ДПЭ-7(2ЦМ)	2500	700	60	26
ДПЭ-7(4ЦМ)	3750	1000	100	28
ДПЭ-7(40ТМ)	8000	1500	40	33
ДПЭ-7(50ТМ)	12000	2500	50	35
ДПЭ-7(60ТМ)	15000	3000	50	37

¹ В комплекте поставки дымососа рукав напорный длинной 10 м. Необходимая длина напорной линии набирается с помощью дополнительных напорных рукавов. Дополнительные рукава заказываются отдельно.

Рукав напорный дополнительный 10 м

Наименование дымососа	Диаметр рукава, мм	
ДПЭ-7(*ЦМ)	300	
ДПЭ-7(40ТМ)	420	
ДПЭ-7(50ТМ)	580	
ДПЭ-6(40ТМ)	620	

Узел стыковочный

		Размеры, мм		Огнестойкость,
Наименование	дпэ	Внешние	Врезные	мин
УС-1вп	*ЦМ	360x360	300x300	30, 60, 90
AC-IRII	40TM	460x460	400x400	
УС-1вв	_	260x260	210x210	30
УС-1ду	_	360x360	300x300	90

ПРОЕКТИРОВАНИЕ

Компания «Пожтехника» с 2005 года специализируется на проектировании систем противопожарной защиты любого уровня сложности.

Нашими специалистами разрабатываются системы пожарной сигнализации, раздел автоматизации систем противопожарной защиты, системы оповещения и управления эвакуацией людей при пожаре, автоматические установки пожаротушения (газового, водяного, порошкового).

Помимо инженерных систем, мы разрабатываем мероприятия по обеспечению пожарной безопасности, производим расчеты пожарного риска, безопасной эвакуации, а также CFD-моделирование движения дымо-воздушной среды и работы систем противодымной защиты, составляем алгоритм работы комплекса систем и установок противодымной защиты. При необходимости разрабатываем специальные технические условия (СТУ) по пожарной безопасности

Нашими специалистами накоплен богатый опыт в проектировании систем пожарной безопасности, как для общественных и административных зданий, объектов культуры, так и для сложных производственных и промышленных объектов, включая особо важные и/или опасные объекты, современные центры обработки данных.

Из преимуществ работы с нами следует отметить индивидуальный подход к выбору специализированных систем и установок для объектов заказчиков. Например, применение волоконно-оптического пожарного извещателя для линейных объектов (тоннели метрополитена, РЖД, эстакады, шахты) позволяет реализовать эффективный алгоритм работы систем противодымной защиты и других смежных инженерных систем объекта в зависимости от места обнаружения возгорания в сложных условиях эксплуатации. Применение аспирационных дымовых извещателей с выносными капиллярами отлично подходит для помещений и зданий с высокими эстетическими требованиями к интерьеру; применение безопасного газового огнетушащего вещества Sineco 1230 (FK-5-1-12) для музеев, фондохранилищ и архивов позволяет гарантировать безопасность предметов хранения; применение специальных исполнений оборудования и креплений необходимы для объектов расположенных в сейсмически опасных зонах.

Перед началом проектирования объект обязательно проверяется, как с точки зрения соответствия актуальным требованиям нормативных документов по проектированию конкретных систем противопожарной защиты, в соответствии с которыми он должен быть спроектирован, так с точки зрения бюджетной оценки применяемого комплекса систем для поиска оптимального решения.

Помимо классического двумерного проектирования мы достаточно давно используем ВІМ технологии, разрабатываем шаблоны и плагины для автоматизированного проектирования. Уже сейчас можно использовать обновленные семейства оборудования компании «Пожтехника» и шаблоны для проектирования установок автоматического пожаротушения. Наши сотрудники и партнеры применяют систему автоматизированного проектирования установок газового пожаротушения CAADS, позволяющую повысить качество выпускаемой документации и снизить сроки выполнения проектных работ.

Рекомендации по проектированию установок газового пожаротушения

Огнетушащие вещества

Сегодня наиболее распространенными на российском рынке газовыми огнетушащими веществами являются Хладоны 125 и 227еа, FK-5-1-12.

Любое из вышеуказанных газовых огнетушащих веществ (ГОТВ) эффективно ликвидирует пожар при создании в защищаемом объеме нормативной огнетушащей концентрации.

FK-5-1-12, Хладон 125 и Хладон 227 относятся к сжиженным газам. Эти ГОТВ хранятся в модулях в сжиженном виде под давлением газа-вытеснителя и, как правило, имеют рабочее давление, не превышающее 6,5 МПа. Визуальный контроль давления осуществляется по манометрам, установленным на ЗПУ модулей газового пожаротушения, которые дополнительно оснащаются реле или преобразователями давления, позволяющие выдать сигналы о падении давления в установке.

Объем и детализация проектной документации часто зависит от пожеланий заказчиков и проводимой экспертизы (государственной или коммерческой). В общем случае, в состав проекта входят техническое задание, пояснительная записка с описанием алгоритма работы установки, расчеты параметров установки, планы с расстановкой оборудования, структурная схема, спецификации и технические задания в смежные разделы. В рабочей документации уточняется размещение и геометрия трубопровода, детализируется спецификация.

Ш

Стадии проектирования

Документация на установку газового пожаротушения должна быть разработана в две стадии (проектная и рабочая документация) в случаях, регламентируемых Градостроительным кодексом, в остальных случаях - в одну стадию (рабочая документация). Объем и детализация проектной документации часто зависит от пожеланий заказчиков и проводимой экспертизы (государственной или коммерческой). В общем случае, в состав проекта входят техническое задание, пояснительная записка с описанием алгоритма работы установки, расчеты параметров установки, планы с расстановкой оборудования, структурная схема, спецификации и технические задания в смежные разделы. В рабочей документации уточняется размещение и геометрия трубопровода, проект дополняется аксонометрической схемой, детализируется спецификация.

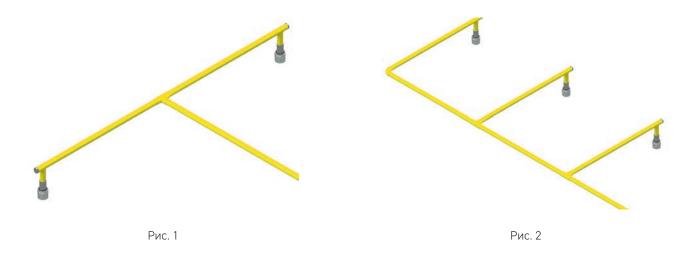
Выполняемые расчеты

Гарантией работоспособности установки являются расчеты, выполняемые в рамках подготовки проектной и рабочей документации:

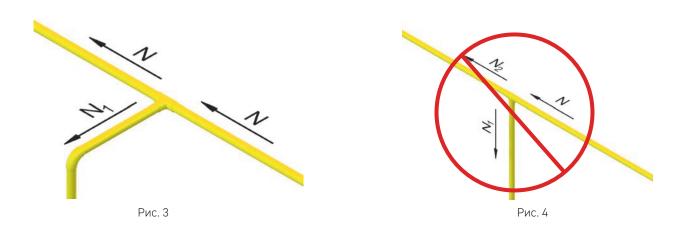
- расчет массы газового огнетушащего вещества согласно приложению Д СП485.1311500.2020;
- гидравлический расчет установки;
- расчет площади проема для сброса избыточного давления согласно приложению Ж СП485.1311500.2020.

Целью выполнения гидравлического расчета является расчет необходимых параметров установки (типов и площадей отверстий в насадках, диаметров труб) для обеспечения подачи 95% массы ГОТВ за нормативное время. Как правило гидравлические расчеты установок газового пожаротушения выполняются при помощи программного обеспечения, которое прошло верификационные испытания в аккредитованный лаборатории и получило положительное заключение.

Исходными данными для гидравлического расчета является количество ГОТВ, место установки модуля, предполагаемая трубная разводка, размещение насадок-распылителей.

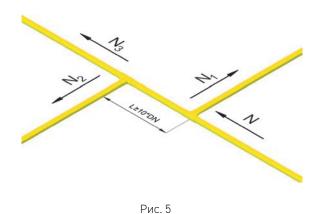

IV

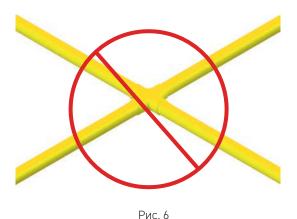
Расстановка насадков и разводка трубопроводов


Насадки-распылители должны быть установлены в соответствии с требованиями завода-изготовителя оборудования, а также положений СП485.1311500.2020. При этом насадки должны располагаться на высоте не более 0,5м от перекрытия. Для ГОТВ Sineco1230 рекомендуется соблюдать расстояние до ближайших преград не менее 1–1,5 метров.

Систему распределительных трубопроводов следует выполнять симметричной. Допускается применение несимметричной системы распределительных трубопроводов при разнице расходов ГОТВ между двумя крайними насадками на одном распределительном трубопроводе не более 20%.

Типичные примеры симметричной и несимметричной трубной разводки приведены на рис. 1 и 2 соответственно.


Трубопроводы необходимо проектировать с горизонтальным делением потоков ГОТВ (Рис. 3). Запрещается выполнять второстепенные отводы на вертикальных участках (Рис. 4). Все разделения потоков выполняются только в горизонтальной плоскости.

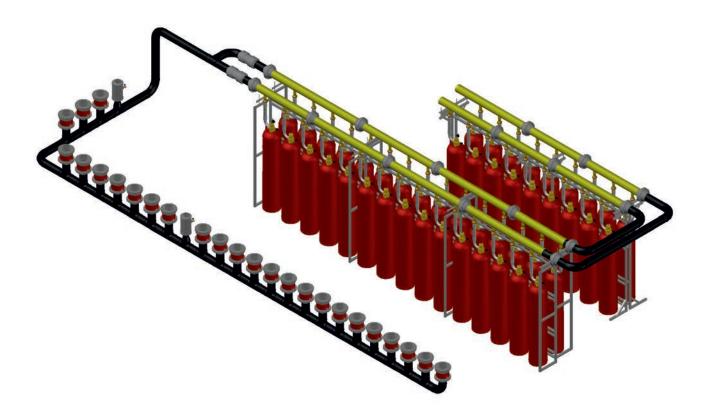


Ответвления от магистрального трубопровода рекомендуется разносить по направлению движения ГОТВ на расстояние L, превышающем 10*DN, как показано на Рис. 5, где DN – номинальный (внутренний) диаметр трубопровода.

Использование крестообразных соединений при применении сжиженных газов недопустимо (Рис. 6).

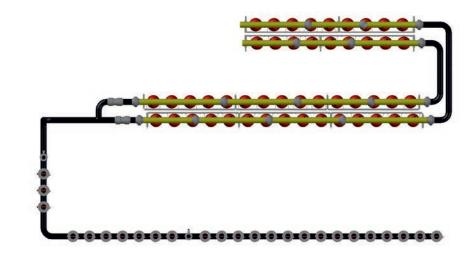
Проектировщику на заметку

- Перечень исходных данных для проектирования и расчета установок газового пожаротушения см. СП485.1311500.2020 п. 9.4.
- Объем оборудования при расчете объема защищаемого помещения НЕ ВЫЧИТАЕТСЯ
- Для тушения пожаров подкласса A1 используют дополнительный коэффициент K4, учитывающий вид горючего материала (1,2; 1,3 либо 2,25). В данном случае допускается увеличивать нормативное время подачи ГОТВ в K4 раз.
- После выполнения гидравлического расчета кол-во ГОТВ, хранящееся в установке, может быть увеличено вследствие ограничения СП485.1311500.2920 о внутреннем объеме трубопроводов (не должен превышать 80% объема жидкой фазы расчетного количества ГОТВ).
- Минимальная заправка модуля газового пожаротушения регламентируется СП485.1311500.2020 (не более 44% от максимального наполнения), максимальная-требованиями завода-изготовителя.
- Обращаем внимание на пункт Г12 СП 485.1311500.2020, регламентирующий необходимость выполнения расчета нормативной объемной огнетушащей концентрации исходя из данных о минимальной нормативной огнетушащей концентрации, указанной в сертификате на конкретный ГОТВ.
- Для удобства обслуживания рекомендуется размещать модули газового пожаротушения индикаторами давления, обращенными к проходам.
- Ширину тех.проходов вокруг модулей рекомендовано предусматривать не менее 800 мм.
- Насадки-распылители для сжиженных газов необходимо располагать с учетом требований п. 9.11.9 СП 485.1311500.2020, учитывая взаимодействие распыляемого ГОТВ с преградами объекта защиты.
- Крепление трубопроводов необходимо выполнять с учетом требований ГОСТ Р 59636-2021.
- Для надежного крепления модулей газового пожаротушения рекомендуется использовать штатные крепления (кронштейны), при необходимости использовать стойки под оборудование.
- Трубопроводы установок следует выполнять из стальных труб по ГОСТ Р 53383, ГОСТ 8732 или ГОСТ 8734, а также труб из латуни или нержавеющей стали. Для резьбового соединения труб следует применять фитинги из аналогичного материала.
- Отводы, переходы, тройники для трубопроводов должны соответствовать требованиям ГОСТ 17375-2001, ГОСТ 17378-2001 и ГОСТ 17376-2001.
- Трубопроводы установок газового пожаротушения согласно ГОСТ12.4.026 окрашиваются в желтый цвет. При наличии требований к эстетике допускается окраска трубопроводов в иной цвет.
- Модули установок пожаротушения, а также трубопроводы должны быть заземлены.

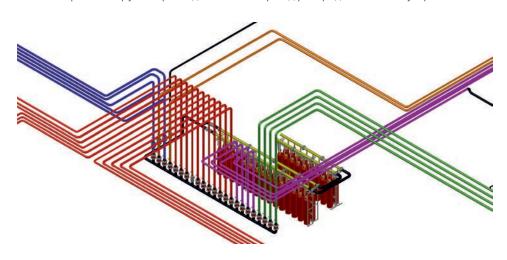

V

Автоматизированные системы проектирования

Специалистами проектного отдела компании «Пожтехника» была разработана система автоматизированного проектирования установок газового пожаротушения CAADS. Программа прошла успешные верифика-ционные испытания в аккредитованной лаборатории и рекомендована для применения при проектиро-вании установок газового пожаротушения на базе ГОТВ ФК-5-1-12, Хладон 227 и Хладон 125. ПО успешно внедрено и применено специалистами проектных подразделений Группы Компаний, а также нашими партнерами при проектировании различных объектов и на практике подтвердило целесооб-разность его применения при проектировании.


Возможности CAADS:

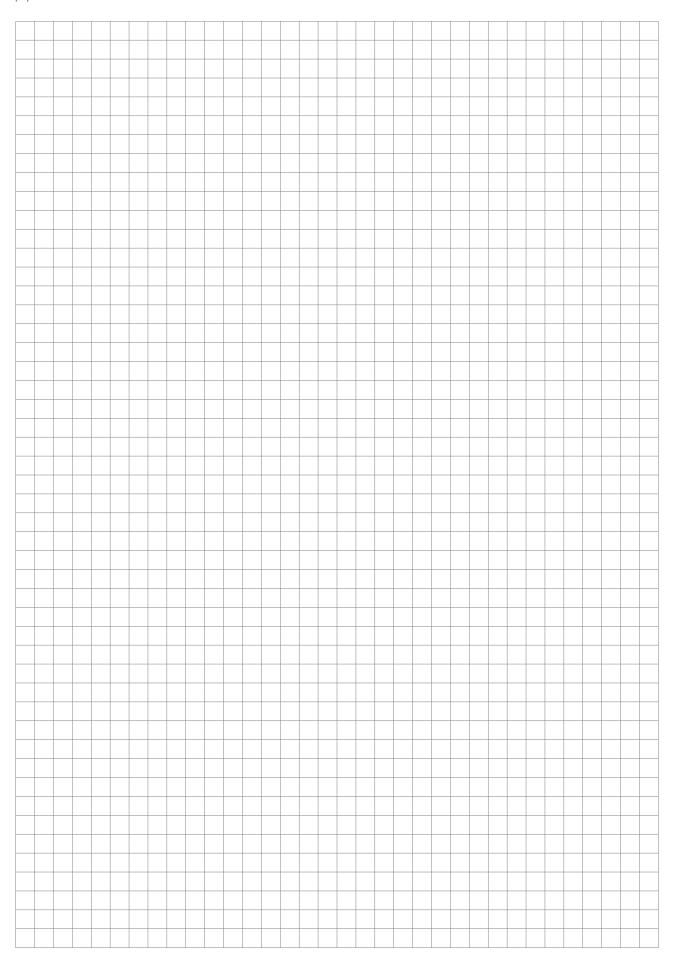
- прорисовка подробной 3D модели установки и трубопроводной разводки;
- возможность автоматизированного построения разных видов и аконометрической схемы установки газового пожаротушения;
- выдача подробного отчета гидравлического расчета с указанием времени выхода газа по каждому направлению, создаваемой концентрации в каждом защищаемом объеме, давления на каждом насадке, перечня труб и насадков;
- формирование заполненного листа общих данных;
- формирование подробной спецификации оборудования и материалов;
- формирование сводной таблицы параметров установки;
- формирование типовых технических заданий в смежные разделы;
- сохранение установки в формате IFC.



Станция пожаротушения.

Фрагмент трубной разводки. Коллектор под распределительные устройства.

Общий вид трубной разводки.


Понимая, что переход к полноценному ВІМ проектированию, особенно в среде слаботочных систем занимает значительное время, мы предусмотрели передачу модели в Revit посредством формата IFC и работаем с полноценной интеграцией нашего приложения с ВІМ на уровне семейств.

Изменение нормативных документов в области пожарной безопасности идет в направлении постепен-ного отказа от конкретных и жестких требований к предоставлению проектным организациям набора инструментов для обоснования принятых проектных решений.

Одним из таких инструментов является моделирование. Вычислительная гидродинамика (CFD - Computational Fluid Dynamics), представляет собой практический способ прогнозирования и визуализации движения потоков дымо-воздушной смеси в реальных условиях. CFD моделирование получает все большее распространение вследствие изменений подходов к решению задач, стоящих перед инженерами, а также благодаря возросшей доступности вычислительных мощностей. Актуальные отраслевые нормы и правила проектирования сегодня диктуют применять CFD моделирование для подтверждения проектных решений в части вентиляции, дымоудаления, эвакуации на объектах с массовым пребыванием людей.

Программные комплексы, основанные на принципах вычислительной газодинамики, широко применя-ются для расчета опасных факторов пожара (ОФП) в рамках действующих приказов МЧС №382 и №404. Мы считаем очень важным на практике совмещать СFD моделирование и ВIМ проектирование. Такой подход позволит контролировать ключевые характеристики проектируемого объекта на всем цикле разработки: от архитектурной концепции до исполнительной документации.

ДЛЯ ЗАМЕТОК

129626, г. Москва, ул. 1-я Мытищинская, д. 3

+7 495 540-41-04 info@firepro.ru

→ firepro.ru

